Камеры сгорания дизелей. Классификация камер сгорания дизельного двигателя. Настенные и напольные котлы

Как понятно, камеры сгорания должны обеспечивать не только лишь
не плохое смесеобразование, да и получение более больших характеристик
экономичности и пусковых свойств мотора. Выделяются две конструктивных
группы камер сгорания дизельных движков, разделяющихся меж собой не только лишь
конструкцией, да и принципом образования топливной консистенции в камере. Это
разбитые и неразделенные камеры сгорания.

Разбитые камеры сгорания

Такие камеры имеют два соединяющихся с собой канала независящих от объема:

  • предкамеру;
  • вихревую камеру.

Вихревая камера может размещаться как в головке блока
цилиндров, так и в самом блоке. Охлаждающая поверхность разбитых камер очень
высока. В этой связи движок предрасположен к значимым термическим потерям,
что приводит к понижению пусковых свойств и нехорошему воздействию на фактор
экономичности. Обычно, дизельные движки с разбитыми камерами сгорания
обеспечивают достаточно высшую степень сжатия.

Главным достоинством разбитых камер сгорания является
изготовление фактически идеальной топливной консистенции. Благодаря использованию
кинетической энергии газов за счет перетекания меж полостями камеры,
очень возрастает сгорание горючего и минимизируется дымность выпускной
системы.

К тому же взаимодействие каналов в разбитых камерах
присваивает устойчивость движку при его работе. Существенно понижаются главные
нагрузки на такие принципиальные детали как шатуны, коленчатый вал, поршневые пальцы.
Уменьшить неким образом так именуемую грубость работы дизеля с
разбитыми камерами сгорания можно так же за счет роста температурного
режима определенных областей камер.

Неразделенные камеры сгорания

Неразделенные камеры сгорания в отличиt от разбитых имеют
один только объем и простейшую форму, согласованную с направлением, числом и
размером топливных потоков впрыскиваемого горючего. Такие камеры имеют очень
малозначительные размеры, как следует, имеют маленькую охлаждающую поверхность.
Таким макаром утраты термический энергии в движках с неразделенными камерами
сгорания существенно меньше, чем в движках с разбитыми камерами. Таковой
дизель имеет хорошие пусковые и экономические характеристики.

Формы неразделенных камер сгорания выделяются своим
разнообразием. Более нередко их конструируют в днищах поршней. Но встречается
размещение камер и в головке блока цилиндров, также отчасти в днищах поршней
и отчасти в головке.

Можно разбить неразделенные камеры сгорания дизельных
движков по их принципному конструктивному расположению последующим
образом:

  1. Тороидальные в поршне.
  2. Полусферические в поршне и головке блока
    цилиндров.
  3. Полусферические в поршне.
  4. Цилиндрические в поршне.
  5. Цилиндрические в поршне с боковым размещением.
  6. Округлые в поршне.
  7. Шаровые в поршне.
  8. Тороидальные с горловиной в поршне.
  9. Цилиндрические, образованные с днищем поршня и
    стеной цилиндра.
  10. Вихревые в поршне.
  11. Трапецеидальная в поршне.
  12. Цилиндрические в головке блока цилиндров под
    выпускным клапаном.

В камерах сгорания типа 1, 2, 3,
4, 5 очень высочайшая степень свойства образования топливной консистенции выходит
благодаря топливному распылению и согласованию форм его топливных потоков с
формами камер. В таких камерах сгорания более нередко устанавливают форсунки,
имеющие многодырчатые распылители, дозволяющие управлять формами топливных
потоков, также употребляют удовлетворенное высочайшее давление впрыска. Эти камеры
имеют очень малогабаритные охлаждающие поверхности. Для дизельных движков с
перечисленными типами камер сгорания свойственны низкие характеристики степени
сжатия.

Для камер сгорания типа 6, 7, 8,
9 свойственны более широкие охлаждающие поверхности. Это хоть и некординально,
но все-же сказывается на пусковых качествах мотора. Но же в процессе
вытеснения воздуха, находящегося над поршнем, в камеру сгорания в момент сжатия
создаются потоки вихревого типа, что содействует хорошему смешиванию воздуха
с топливом, образуя достаточно доброкачественную топливную смесь.

Камеры сгорания типа 10, 11, 12
используются не только лишь в дизельных, да и в движках с
возможностью использования различных видов горючего. Соответствующей чертой таких камер
является серьезное направление вихревых потоков, которое содействует испарению
горючего и доставке его с определенной последовательностью в необходимое место
сгорания. Чтоб сделать лучше рабочие характеристики в цилиндрических камерах в головке
блока цилиндров под выпускным клапаном используют высочайшие температуры выпускного
клапана, сразу являющегося стеной камеры сгорания.

У дизелей требования к форме камеры сгорания определяются процессом смесеобразования. Для создания рабочей смеси в них отводится очень малое время, так как почти сразу после начала впрыска топлива начинается сгорание, и остаток топлива подается уже в горящую среду. Каждая капля топлива должна войти в соприкосновение с воздухом как можно быстрее, чтобы выделение теплоты произошло в начале хода расширения.

Для удовлетворения этих требований необходимым является создание интенсивного направленного движения воздуха, но организовать этот процесс нужно так, чтобы с впрыскиваемым топливом смешалось необходимое для сгорания количество воздуха. Принципиально для этой цели существуют две возможности: направлять либо воздух к топливу, либо топливо к воздуху. У автомобильных дизелей используются оба способа.

В первом из них топливо впрыскивается непосредственно в цилиндр несколькими струями (факелами), которые обдуваются вращающимся потоком воздуха. Скорость потока должна обеспечивать прохождение воздухом пути от одной струи к другой за время сгорания .

Число струй, однако, ограничено, и поэтому необходимое количество топлива должно впрыскиваться с определенной скоростью, чтобы обеспечивалось, его хорошее распыливание. Если топливо хорошо распылено, то оно быстро прогревается после впрыска в горячий воздух, и время, проходящее до его воспламенения (так называемая задержка воспламенения), уменьшается. Малое время задержки воспламенения нужно для того, чтобы количество топлива, поданного в камеру сгорания за этот период, не было настолько большим, чтобы после воспламенения вызвать резкое нарастание давления и большую жесткость работы двигателя. Регулирование процесса, сгорания может быть обеспечено законом подачи топлива в уже воспламененную среду.

Если скорость, время и количество подаваемого топлива определены, то можно рассчитать диаметр силовых отверстий распылителя форсунки, задавшись их числом. Для устранения опасности закоксовывания и обеспечения технологичности изготовления распылителей форсунок минимальный диаметр отверстий ограничивается 0,25-0,3 мм. Поэтому их число в автомобильных дизелях не превышает 4-5. В соответствии с этим должна быть установлена интенсивность вращения воздуха. Вращательное движение воздуха в цилиндре можно создать с помощью впускного канала тангенциальной или винтовой формы. Так же, как и у бензиновых двигателей, дополнительную турбулизацию заряда в дизеле можно создать в конце хода сжатия вытеснением воздуха из пространства между днищем поршня и головкой цилиндра.

Образование смеси с помощью второго способа - подвода топлива к воздуху - затруднено, если нельзя использовать большое число форсунок. У дизелей с разделенными камерами сгорания (предкамерных и вихрекамерных) впрыск осуществляется так, что все топливо подается во вспомогательную камеру малого объема, содержащую лишь часть воздуха, поступившего в цилиндр. При воспламенении топлива в этой камере давление повышается и вытесняет еще не сгоревшее топливо в объем основной камеры сгорания над поршнем, где сгорание завершается.

Таким образом, по способу смесеобразования различают дизели с непосредственным впрыском топлива в цилиндр и дизели с разделенной камерой сгорания. При непосредственном впрыске камера сгорания образована в поршне, который имеет более высокую температуру, чем охлаждаемая головка цилиндра. Это уменьшает потери теплоты горячих газов в стенки камеры сгорания. Камера сгорания должна быть компактной с тем, чтобы потери теплоты при сжатии воздуха также не были большими и, следовательно, для достижения необходимой для воспламенения топлива температуры не требовалась слишком высокая степень сжатия. Величина степени сжатия дизеля сверху ограничена нагрузкой на кривошипный механизм и потерями на трение, а снизу - условиями обеспечения так называемого холодного пуска. При непосредственном впрыске степень сжатия ε лежит в пределах от 15 до 18. При холодном пуске дизели этого типа не требуют дополнительных мер для обеспечения воспламенения топлива.

У дизеля с разделенной камерой сгорания воздух во время такта сжатия поступает во вспомогательную камеру через соединительный канал с большой скоростью и при этом значительно охлаждается. Поэтому для обеспечения необходимой температуры к моменту воспламенения требуется более высокая степень сжатия - от 20 до 24, но, несмотря на это, при холодном пуске двигателя воздух во вспомогательной камере должен предварительно подогреваться с помощью специальной свечи накаливания, выключаемой после пуска двигателя.

Площадь поверхности основной и вспомогательной камер сгорания весьма велика, скорость движения воздуха около их стенок также достигает высоких значений. Это означает повышенную теплоотдачу в стенки, т. е. рост тепловых потерь. В связи с этим дизели с раздельной камерой сгорания имеют более высокие удельные расходы топлива, чем дизели с непосредственным впрыском.

Итак, дизели с непосредственным впрыском топлива более экономичны. Недостаток их состоит в значительном шуме при сгорании, однако у последних конструкций этот недостаток практически устранен. Главной причиной шума является высокая скорость нарастания давления в начальной фазе горения. Для устранения этого явления необходимо сократить период задержки воспламенения и управлять дальнейшим протеканием процесса сгорания посредством закона подачи топлива.

Хорошие результаты по снижению жесткости работы достигнуты в дизелях фирмы «МАН» с помощью сферической камеры сгорания, расположенной в поршне.

Форсунка в этих дизелях имеет только два отверстия, через одно из которых основная масса топлива впрыскивается на стенку камеры сгорания, а через другое - меньшая, запальная порция направляется в середину камеры, где воздух имеет наиболее высокую температуру. Воздуху в камере придано интенсивное вращение. Топливо, находящееся на стенке камеры, относительно холодное и поэтому воспламенения всей его массы сразу не происходит. Топливные пары поступают в поток воздуха со стенок камеры постепенно, смешиваются с ним, и образовавшаяся после этого топливовоздушная смесь воспламеняется. При этом обеспечивается мягкая и достаточно экономичная работа двигателя, в связи с чем возникло несколько близких по принципиальной схеме вариантов этого рабочего процесса.

В частности, в камере сгорания цилиндрической формы фирмы «Дойц» (ФРГ) одна струя впрыскивается параллельно оси камеры в пространство вблизи стенки. Полученные при этом способе результаты также можно оценить положительно. Следует отметить, что при таком смесеобразовании многое зависит от температуры стенок камеры сгорания.

При затягивании процесса сгорания теплота, выделяющаяся в течение хода расширения, используется не полностью (см. рис. 3 в статье «Влияние степени сжатия на индикаторный КПД двигателя »), из-за чего увеличивается удельный расход топлива, т. е. преимущества непосредственного впрыска топлива фактически теряются. В наиболее широко применяемых камерах сгорания тороидальной формы топливо впрыскивается по радиусу камеры на ее стенку несколькими симметричными струями, расположенными под большим углом к вертикальной оси. При сгорании вначале реагирует часть топлива, смешиваемая с воздухом прямо у стенки. Газы, образующиеся при горении, имеют высокую температуру и небольшую плотность. При сильном вращении заряда на стенки камеры за счет центробежной силы попадает холодный воздух из центральной части камеры, оттесняя к центру легкие продукты сгорания. Непосредственно вблизи стенок воздух смешивается с топливом. В лаборатории фирмы «Рикардо» (Англия) этот процесс был зарегистрирован на кинопленку.

В дизелях с разделенными камерами сгорания вспомогательную камеру довольно просто создавать и при небольших диаметрах цилиндра. Это весьма важно при конвертировании бензинового двигателя в дизель. Такая задача с успехом была решена под руководством П. Хофбауэра на двигателе автомобиля «Фольксваген Гольф» (рис. 1).

В алюминиевой головке цилиндра была образована небольшая вихревая камера сгорания с форсункой и свечой накаливания. Выемка в днище поршня и выходное отверстие канала, соединяющего вихревую камеру с цилиндром, выполнены обычным способом. Объем вихревой камеры составлял 48 % объема всей камеры сгорания. Рабочий объем двигателя был увеличен с 1100 см 3 до 1500 см 3 , степень сжатия ε = 23,5 . Мощность этого дизеля при 5000 мин -1 составила 37 кВт.

Удельный расход топлива при частоте вращения n = 2500 мин -1 дизельного и бензинового двигателей автомобиля «Фольксваген Гольф» показан на рис. 2.

При среднем эффективном давлении p e = 0,2 МПа удельный расход топлива у дизеля ниже на 25 %. С повышением нагрузки разница в топливной экономичности бензинового двигателя и дизеля уменьшается, а при работе в режиме полной нагрузки она равна нулю. Снижение удельного расхода топлива при частичной нагрузке является очень важным, так как для легковых автомобилей именно эти режимы являются наиболее типичными при движении в городских условиях.

Варианты конструкции дизеля «Фольксваген», отличающиеся размещением форсунки и свечи накаливания, показаны на рис. 1. Изменение местоположения свечи накаливания принесло уменьшение удельного расхода топлива и снижение дымности отработавших газов, что отражено на графиках, приведенных на рис. 3, а. Влияние нагрузки, т. е. среднего эффективного давления p e на те же показатели при работе двигателя в режиме постоянной частоты вращения, равной 3000 мин -1 , показано на рис. 3, б. Улучшение отчетливо видно на всех режимах работы двигателя. Вариант Б (см. рис. 1) отличается расположением свечи накаливания относительно направления вращения воздуха в вихревой камере. Эта конструкция, однако, достаточно сложна при ее реализации в производстве.

Энергетический кризис подтолкнул многих конструкторов автомобильных бензиновых двигателей к конвертированию их в дизельные с целью повышения индикаторного КПД . Конструктор и исследователь из ФРГ Л. Эльсбетт при конвертировании бензиновых двигателей достиг до 20 %. В его дизелях «ЭЛКО» используется непосредственный впрыск топлива односопловой форсункой в сферическую камеру сгорания, расположенную в днище поршня. Ось струи делит радиус камеры пополам в точке пересечения с ним. Организация рабочего процесса использует эффект перемещения горячих продуктов сгорания малой плотности в центр вращающегося в камере сгорания воздушного заряда. Вследствие этого происходит хорошее перемешивание горящей смеси с воздухом, и так как сгорание происходит в основном в центре камеры, то тепловые потери в ее стенки относительно невелики.

Поршень состоит из двух частей, причем верхняя с размещенной в ней камерой сгорания и поршневыми кольцами стальная. Сталь обладает большой термической прочностью и худшей, чем алюминий, теплопроводностью, и поэтому поверхность камеры сгорания имеет более высокую температуру, что, в свою очередь, уменьшает теплопередачу от горячих газов в стенки камеры.

Такое решение, кроме того, предотвращает повышенный износ поршневых канавок, характерный для алюминиевых поршней дизелей.

Юбка поршня, служащая направляющей, изготовлена из алюминиевого сплава и соединяется с верхней частью через поршневой палец. Такая конструкция поршня обладает свойствами крейцкопфа, т. е. уменьшает действующие на стенку цилиндра боковые силы, возникающие при движении шатуна, и создает предпосылки для исключения, являющегося одним из источников шума при работе двигателя опрокидывающего момента, который действует на верхнюю часть поршня.

Для снижения удельного давления на поршневой палец верхняя головка шатуна и бобышки днища поршня имеют клиновидную форму в сечении по оси пальца. Благодаря этому площадь верхней части бобышки днища поршня больше нижней его части. Аналогично нижняя часть втулки шатуна имеет также большую площадь, чем верхняя. Края поршневого пальца воспринимают лишь незначительные силы от юбки поршня.

Водяные каналы в головке цилиндра дизеля «ЭЛКО» исключены. Теплота отводится только от наиболее важных мест, таких как межклапанные перемычки и отверстия для форсунок при помощи масла, циркулирующего по специально высверленным каналам диаметром 6-8 мм. С целью уменьшения отвода теплоты цилиндры охлаждаются таким образом, чтобы температура их верхней зоны не превышала температуру, необходимую для обеспечения смазывания.

При таком уменьшении теплоотвода в систему охлаждения большее количество теплоты отводится, однако с отработавшими газами, что, естественно, приводит к применению турбины для использования этой теплоты. Удельные расходы топлива дизелей «ЭЛКО» изображены на рис. 4, где представлены многопараметровые характеристики пятицилиндрового дизеля с рабочим объемом 2300 см 3 мощностью 80 кВт (рис. 4, а) и шестицилиндрового с рабочим объемом 13300 см 3 (рис. 4, б) . Оба дизеля имеют газотурбинный наддув без промежуточного охлаждения наддувочного воздуха.

Уменьшение теплоотдачи в систему охлаждения позволяет использовать радиатор меньшего объема и соответственно вентилятор меньшей мощности. Если учесть необходимость отапливания автомобиля в холодный период, для чего вполне достаточно теплоты, отводимой от двигателя, то радиатор для охлаждения двигателя в этот период может вообще не потребоваться.

При сравнении удельных расходов топлива нужно учитывать влияние целого ряда факторов. Так, чем больше диаметр цилиндра, тем более выгодные условия имеются для достижения малого удельного расхода топлива. Важным является также отношение диаметра цилиндра к величине хода поршня. Л. Эльсбетт называет свой дизель «теплоизолированным», что является определенным шагом вперед в направлении создания адиабатного двигателя , о котором будет сказано в следующих главах книги. Некоторые особенности конструкции дизеля «ЭЛКО» показаны на рис. 5.

Дизели непосредственного впрыска по сравнению с дизелями с разделенными камерами сгорания имеют лучшие условия для уменьшения тепловых потерь в систему охлаждения. Выше уже говорилось о менее интенсивном охлаждении поверхности камеры сгорания и снижении скорости движения горячих газов около стенок. Однако и при непосредственном впрыске могут создаваться различные условия для отвода теплоты. В качестве примера на рис. 6 показан процесс совершенствования камеры сгорания дизеля «Татра 111А» (ЧССР).

В первом варианте этого дизеля воздушного охлаждения была использована камера сгорания полусферической формы. Таким путем при помощи больших клапанов стремились получить хорошее наполнение цилиндра и благодаря большому углу развала клапанов обеспечить возможности создания ребер охлаждения в зоне седла выпускного клапана. Для получения требуемой величины объема камеры сгорания днище поршня имело куполообразную форму, камера сгорания теряла компактность, и ее развитые поверхности охлаждения приводили к большим потерям теплоты и пониженным температурам в конце сжатия.

Уменьшив угол развала клапанов и применив почти параллельное их расположение, достигли почти плоского днища головки цилиндра и уменьшения поверхности охлаждения. Камера сгорания была размещена в днище поршня и стала более компактной. Температура стенок камеры сгорания в поршне выросла, и уменьшился отвод теплоты через них. Узкая горловина камеры сгорания обеспечила интенсивное завихривание воздуха при сжатии, что способствовало улучшению смесеобразования и регулирования процесса сгорания. Тем самым были снижены тепловые потери при сгорании, улучшены условия холодного пуска, уменьшен шум. Удельный расход топлива при этом снизился на 15 %. Сравнение начального и модернизированного вариантов камеры сгорания, показанных на рис. 6, является примером того, как с помощью конструкции камеры сгорания можно снизить расход топлива.

Главное достоинство дизельных двигателей - это низкие затраты на топливо, поскольку моторы этого типа имеют малые удельные расходы топлива на основных эксплуатационных режимах, да и само горючее во многих странах заметно дешевле бензина.

К числу недостатков дизеля по сравнению с бензиновыми двигателя ми относятся: сравнительно низкие мощностные показатели, более дорогая в изготовлении и обслуживании топливная аппаратура, худшие пусковые качества, повышенный выброс некоторых токсичных компонентов с отработавшими газами, повышенный уровень шума.

Экономические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от особенностей рабочего процесса и, в частности, от типа камеры сгорания, системы впрыскивания топлива. Камеры сгорания дизельного двигателя делятся на разделенные (вихрекамерные и форкамерные), полуразделенные и неразделенные .

Дизельные двигатели с неразделенной камерой иногда называют двигателям и с непосредственным впрыском.

Дизельные двигатели с разделенной камерой сгорания обычно устанавливаются на грузовики малой грузоподъемности и легковые автомобили. Это определяется необходимостью снижения уровня шума и меньшей жесткостью работы. При подходе поршня к ВМТ воздух из основного объема камеры сгорания вытесняется в дополнительный, создавая в нем интенсивную турбулизацию заряда, что способствует лучшему перемешиванию капель топлива с воздухом. Недостатком дизельных двигателей с разделенной камерой сгорания являются: некоторое увеличение расхода топлива вследствие повышения потерь в охлаждающую среду из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.

Дизельные двигатели с неразделенной камерой сгорания имеют низкие расходы топлива и легче запускаются. Недостатком их является повышенная жесткость работы и соответственно - высокий уровень шума.

Для полного сгорания топлива изготовитель выбирает оптимальное соотношение между количеством сопловых отверстий у форсунки и интенсивностью вихревого движения заряда в цилиндре - так, чтобы струи топлива полностью охватили весь воздушный заряд. Чем меньше сопловых отверстий, тем более интенсивным должно быть вращательное движение заряда. У четырехтактных дизельных двигателей вращательное движение воздуха во время хода впуска обеспечивается тангенциальным расположением впускного канала, наличием ширмы у клапана, винтовым (улиткообразным) каналом перед впускным клапаном. В процессе сжатия при подходе поршня к ВМТ воздух перетекает из надпоршневого пространства в камеру сгорания в поршне, увеличивая интенсивность вращательного движения свежего заряда. Поэтому при ремонте дизельных двигателей необходимо следить, чтобы зазор между днищем поршня и головкой цилиндров соответствовал заданной инструкцией величине. При большем зазоре интенсивность турбулизации заряда будет недостаточна, при меньшем на больших нагрузках может появиться стук поршня от его ударов по головке. Во время сборки дизельного двигателя этот зазор проверяется установкой свинцовых пластинок на днище поршня и прокруткой коленчатого вала после затяжки болтов крепления головки.

Пуск дизельного двигателя:

У дизельных двигателей с разделенной камерой сгорания (вихрекамерные или форкамерные) пусковые качества значительно хуже, чем у дизельных двигателей с неразделенной камерой.

Для облегчения пуска дизельные двигатели с разделенной камерой оснащаются электрическими свечами накаливания, устанавливаемыми в форкамеру или вихревую камеру. Реже свечи устанавливаются в дизельных двигателей с непосредственным впрыском.

Свечи бывают открытого и закрытого типа со спиралью накаливания или нагревательным элементом. Они выпускаются теми же фирмами, что и свечи зажигания. Кожух свечи располагается в камере сгорания дизельного двигателя так, чтобы конус распыленного топлива попадал только на его раскаленный наконечник.

В период, когда токсичность отработавших газов оценивалась по выбросу СО и СН (углеводородов), в широкой прессе отмечалось, что дизели имеют из всех ДВС наиболее низкую токсичность. Однако в дальнейшем, когда товарные бензины стали выпускаться без этиловой жидкости, а бензиновые двигатели начали оснащаться трехкомпонентными каталитическими нейтрализатор ами, снижающими содержание СО, СН, NОх на 90-95%, о низкой токсичности дизельных двигателей по сравнению с бензиновыми двигателями стали скромно умалчивать.

Повышенная токсичность дизелей определяется следующими факторами:

Первый из них - низкая эффективность каталитических нейтрализаторов . Это связано с тем, что степень сжатия, а следовательно, и степень расширения дизелей значительно выше, чем у бензиновых двигателей. Поэтому температура отработавших газов недостаточна для эффективной работы нейтрализаторов. В связи с этим не удается добиться снижения выброса оксидов азота, которые в несколько десятков раз более токсичны, чем СО.

Второй фактор - повышенный выброс на некоторых режимах , особенно во время прогрева, продуктов неполного сгорания с характерным неприятным запахом (акролеина, альдегидов и др.), многие из которых являются канцерогенами. Третий - частицы сажи являются носителями канцерогенов. Попадая в дыхательные пути, они вызывают раковые опухоли. Из-за того, что ни в одной из стран до сих пор нет быстродействующих газоанализаторов, нет и возможности нормировать их выброс. Поэтому законодатели используют косвенные показатели - ограничение выброса углеводородов и твердых частиц.

Основные причины повышенной токсичности и повышенного расхода топлива дизельных двигателей следующие:

Низкое качество топлива,

Нарушение работы системы топливоподачи (слишком низкий коэффициент избытка воздуха, неравномерная подача топлива по цилиндрам, смещение фаз впрыска, межцикловая неравномерность подачи топлива),

Повышенный расход масла на угар из-за износа деталей цилиндропоршневой группы,

В двигателях с турбонаддувом - слишком низкое давление наддува.

Одна из главных характеристик дизельного топлива - это его цетановое число, показывающее способность к самовоспламенению.

Оно определяется на одноцилиндровой установке сравнением со смесью эталонного топлива, подбираемого так, чтобы период задержки воспламенения был таким же, как и у испытуемого горючего. Величина цетанового числа должна быть не менее 45. Она зависит от химического состава топлива и наличия в нем специальных присадок. Увеличение цетанового числа достигается повышением содержания в топливе парафиновых углеводородов. При этом улучшаются пусковые качества, однако при цетановом числе 50...55 ухудшается полнота сгорания.

Геометрические размеры камер двигателей устанавливаются из условия обеспечения заданной тяги при возможно больших значениях удельной тяги, т.е. при возможно большем использовании энергии, содержащейся в топливе.

Объём камеры определяется по времени пребывания в камере топлива и газообразных продуктов – τ пр. . оно должно быть достаточным для полного завершения процесса в камере сгорания.

Объём камеры сгорания определяется по формуле

Где - весовой секундный расход газа;

R – газовая постоянная продуктов сгорания;

Т о и Р о температура и давление газов в камере.

Другим параметром, использующимся для определения объёма, является приведённая длина – L пр. - , где F кр – площадь критического сечения сопла.

Для окончательного определения размеров камеры необходимо кроме V k знать диаметр камеры d o или безразмерную площадь f k = F o /F кр . Обычно принимают f k ≥ 3. Ориентировочно диаметр камеры для азотно-кислотных двигателей определяется по зависимости d o = (2,5…3)d кр , а для спиртово-кислородных d o = (2,5…2,5)d кр .

Форма камеры сгорания может быть шарообразная (грушевидная, например, на двигателе «Фау-2»), цилиндрическая (на двигателях современных ракет-носителей) и коническая (практически не применяется).

Достоинства шарообразной камеры сгорания в том, что

1. при заданном объёме поверхность у неё наименьшая, что уменьшает вес камеры сгорания и облегчает охлаждение;

2. эти камеры сгорания более прочные по сравнению с цилиндрическими камерами.

Недостатки шарообразной камеры сгорания в том, что

1. она сложна в изготовлении;

2. имеет малую площадь для размещения форсунок и поэтому форсунки размещают в форкамерах, что усложняет технологию изготовления камеры сгорания.

Цилиндрические камеры сгорания удобны и просты в изготовлении. В них легко осуществляется процесс смесеобразования. Недостатки камеры сгорания в том, что прочностные свойства ниже, чем у шарообразной камеры и больше поверхность для охлаждения.

Коническая камеры сгорания представляет собой входную часть сопла и поэтому проста в изготовлении. Основным недостатком камеры является низкая удельная тяга, так как вследствие разгона продуктов сгорания по длине камеры и падения давления незавершается процесс горения.

Подготовка горючего и окислителя к сгоранию осуществляется в процессе смесеобразования: компоненты топлива распыляются , перемешиваются и частично испаряются . Для лучшего смесеобразования необходимо обеспечить:

1. тонкость распыла компонентов и хорошее их перемешивание (характеризуется диаметром капелек – 25…250 мк);

2. однородность концентрации топлива по поперечному сечению камеры (уменьшаются потери из-за физической неполноты сгорания);


3. равномерные скорости движения по поперечному сечению камеры сгорания, т.к. при больших скоростях горение неполное, а при малых скоростях не полностью используется объём камеры.

Выполнить эти условия можно подбором соответствующе головки камеры, типом форсунок и расположением их на головке.

В ЖРД применяются головки плоские, сферические с предкамерами и шатровые .

Плоские головки (рис. 10)применяют для цилиндрических или конических камер сгорания. Они имеют простую конструкцию и в сочетании с цилиндрическими камерами обеспечивают однородность поля скоростей и концентрации топлива по поперечному сечению. Их недостаток – малая прочность и жесткость. На плоских головках форсунки размещают 3 способами: шахматное расположение; концентричное и сотовое. Сотовое расположение обеспечивает лучший процесс смесеобразования, так как на одну форсунку горючего приходится 6 форсунок окислителя. Возможно сочетание концентричного расположения форсунок с шахматным и сотовым.

Сферические головки с предкамерами применяются для грушевидных или сферических камер сгорания («Фау-2», 8К52), т.е. для двигателей больших тяг. Форсунки у них находятся в предкамерах: в центре ставится форсунка «О» с большим числом отверстий, расположенных под различными углами к оси предкамеры, а форсунки «Г» размещаются на боковой поверхности предкамеры.

Шатровые головки сложны в изготовлении, и в них трудно организовать хорошее смесеобразование.

От типа форсунок и их конструкции зависит качество распыла. По принципу действия форсунки разделяются на две группы:

1. струйные форсунки (разновидность - щелевые);

2. центробежные форсунки - тангенциальные и шнековые (с завихрителями).

Форсунки могут быть однокомпонентными и двухкомпонентными.

Струйные форсунки рис.11 наиболее просты в изготовлении. Основные недостатки струйных форсунок в грубом распыле топлива, малом угле конуса распыла (≈10…15 о) и большой дальнобойности струи, увеличивающей зону распыла и удлиняющей камеру сгорания.

В центробежных форсунках создаётся искусственная закрутка компонента. В тангенциальной форсунке жидкость поступает через отверстие, ось которого перпендикулярна к оси форсунки, но не пересекается с ней. Центральная часть такой форсунки не заполнена жидкостью – в ней находится газовый вихрь, а жидкость расположена по переферии.

В шнековой форсунке закрутка осуществляется шнеком, имеющим на своей поверхности винтовые каналы.

Центробежные форсунки обеспечивают большой угол распыла (≈70…120 о) при небольшой длине факела распыла.

Двухкомпонентные форсунки позволяют улучшить смесеобразование, так как обеспечивают смешение компонентов в жидкой фазе, но они сложны в производстве, и применяются в том случае, когда недостаточно места для размещения.

5. Геометрические размеры и форма сопла.

Продукты сгорания, образовавшиеся в камере двигателя, поступают в сопло, где происходит превращение тепловой энергии в кинетическую энергию движения газов.

Состояние продуктов сгорания, как и всякого газа, характеризуется вполне определёнными физическими величинами (параметрами), главные из которых:

абсолютное давление Р , абсолютная температура Т , плотность ρ (удельный вес γ или удельный объём υ ), газовая постоянная R и скорость истечения W .

Для идеальных газов или их смесей установлена связь между основными параметрами в виде уравнения состояния: (1)

Процесс в камере двигателя происходит без подвода тепла к газу и отвода его от газа. Такой процесс называется адиабатическим. Для адиабатического процесса между параметрами существует связь, выражающаяся зависимостями:

Газ из камеры поступает в сопло. Из уравнения энергии установлено, что зависимость между скоростью газа и сечением канала выражается уравнением , (3)

где М=W/a (a – скорость звука).

Свойства газового потока зависят от скорости звука. При адиабатическом процессе скорость звука определяется по формуле . Сечение, где скорость газа равна скорости звука, называют критическим и все параметры потока называют также критическими . Равенство двух скоростей можно получить только при определённом соотношении давления в камере и на срезе сопла: . Это соотношение является исходным параметром при проектировании сопла и связано с соотношением S a /S кр, которое называют уширением сопла .

Сверхзвуковые скорости продуктов сгорания можно получить при помощи сопла Лаваля (сверхзвуковое сопло), представляющего собой канал, сечение которого сначала уменьшается, а затем увеличивается (см. формулу сопла – уравнение (3))

Как следует из формул (1,2,3)параметры газового потока по длине сопла изменяются следующим образом рис.14.

Независимо от конструктивных схем основных камер сгорания, для всех их общими являются следующие конструктивные элементы:

– диффузор;

– жаровая труба;

– стабилизаторы горения (завихрители);

– смесители;

– пусковые воспламенители;

– дренажные клапаны;

– топливные коллекторы с топливными форсунками.

Для трубчатых и трубчато-кольцевых камер, кроме того, используются пламяперебрасывающие патрубки и газосборники.

Диффузор устанавливается на входе в камеру сгорания и служит для понижения скорости воздуха на входе в камеру сгорания со 120…180 м/с до 30…50 м/с для обеспечения устойчивого горения топлива. На диффузоры приходится основная доля гидравлических потерь, поэтому их профилированию уделяется особое внимание.

Возможны несколько конструкций диффузоров: бессрывный, с разделением потоков, с запланированным срывом.

Бессрывный диффузор представляет собой плавный канал с углом раскрытия 18-25 0 и обеспечивает выравнивание потока, безотрывное течение воздуха и небольшие гидравлические потери. Однако он имеет значительный осевой размер, что увеличивает расстояние между опорами ротора и длину всего двигателя.

С целью уменьшения осевых размеров диффузора он может заканчиваться внезапным увеличением площади проходного сечения – запланированным срывом (АЛ-21, ТВ3-117, Р-29). В месте резкого перехода сечений могут устанавливаться специальные гребешки – провокаторы срыва потока.

Возможна также конструкция бессрывного диффузора с большим углом раскрытия (до 35-40 0). Для обеспечения бессрывного течения, поток в таком диффузоре делится на два или три канала, имеющих небольшие углы раскрытия.

Жаровая труба ограничивает зону горения топливо-воздушной смеси. В современных камерах она выполняется вальцовкой и сваркой тонкостенных колец, что снижает температурные напряжения в ее конструкции. Снаружи жаровая труба охлаждается вторичным воздухом, изнутри обеспечивается пленочное заградительное охлаждение.

Жаровая труба для обеспечения свободы температурных деформаций крепится в корпусе камеры как двухопорная балка, при этом обеспечивается ее фиксация только в одном поясе крепления, а во втором поясе – свобода перемещения.

Стабилизаторы горения (завихрители) обеспечивают устойчивость горения топливо-воздушной смеси, создавая зону обратных токов и интенсифицируя процессы смесеобразования путем увеличения турбулентности потока. Находят применение лопаточные (Р-11), струйные (щелевые, терочные – Д-25В, Д-20П) и срывные (АИ-20, АИ-25) стабилизаторы, а также их комбинации.

Смесители осуществляют подвод вторичного воздуха внутрь жаровой трубы для снижения температуры газа перед турбиной до заданного значения. Чтобы холодный воздух не попал в зону обратных токов и не нарушил процесса сгорания топлива из-за местного охлаждения газов, вторичный воздух вводят постепенно через систему отверстий или смесительных патрубков различного сечения. Струи вторичного воздуха должны иметь большую глубину проникания в поток горячего газа, чтобы снизить температуру газа не только у стенок, но и в ядре потока.




Величина глубины проникновения струй вторичного воздуха в жаровую трубу камеры рассчитывается по зависимости

где – глубина проникновения струи;

– диаметр отверстия;

и – скорость вторичного воздуха в отверстии и скорость сносящего газового потока;

– текущая длина жаровой трубы.

Пусковые воспламенители обеспечивают начальное воспламенение топливо-воздушной смеси при запуске двигателя. Они могут быть выполнены в виде электрической свечи у низковысотных двигатетелей (Д-25В, ТВ3-117) или при малом объеме камеры сгорания (РД-33) или в сочетании с пусковой топливной форсункой (АЛ-7, Р-11). Свечи применяют низковольтные (с рабочим напряжением 1500-2500 В, полупроводниковые, поверхностного разряда). Охлаждение пускового воспламенителя при запуске двигателя – емкостное, за счет нагрева собственной массы. Для облегчения высотного запуска и запуска в зимнее время в воспламенителе может применяться кислородная подпитка от бортовых кислородных баллонов (Р-25).

Дренажные клапаны располагаются в нижней части камеры сгорания и соединяются трубопроводом с дренажной системой двигателя. Они необходимы для слива остатков топлива из камеры при расконсервации двигателя, неудавшемся или ложном запуске.

Пламяперебрасывающие патрубки осуществляют передачу пламени в трубчатых или трубчато-кольцевых камерах сгорания из одной жаровой трубы в другую и несколько выравнивают давление в головках жаровых труб.

Газосборник необходим для плавного перевода потока газа от круглого сечения жаровой трубы трубчатой или трубчато-кольцевой камеры сгорания к кольцевому сечению перед сопловым аппаратом турбины.


В настоящее время в энергетических ГТУ используются различные газообразные и жидкие топлива, основными горючими которых являются углеводороды.

Природные газы состоят главным образом из метана (); в попутных нефтяных газах могут содержаться значительные количества , , , .

Нефтяные жидкие топлива для ГТУ состоят из различных по строению сложных молекул. Обычно массовая доля водорода составляет в них 11 – 13,5, углерода 86 – 87,5%. Во многих случаях в топливах содержатся соединения серы, кислорода, азота, влага и негорючие составляющие: в газообразных , , и др., в жидких – образующие золу соединения металлов.


В энергетических ГТУ используются КС с расположением жаровых труб вокруг вала ГТУ и выносные камеры сгорания. Каждый из этих типов имеет свои преимущества и недостатки.

В трубчато-кольцевых камерах сгорания и индивидуальных камерах сгорания, расположенных концентрически вокруг вала ГТУ, вследствие небольших диаметров жаровых труб струи воздуха, вытекающего из отверстий в их стенках, проникают в ядро факела при приемлемых перепадах давления, обеспечивая быстрое перемешивание с воздухом и полное сгорание топлива без образования сажи в переобогащенных топливом зонах. Высокая турбулентность факела при горении в струях снижает также излучение на стенки. Обеспечить требуемую прочность, жесткость и температурное состояние металла небольших камер сгорания конструктивно проще. На их характеристики легче влиять с помощью тех или иных конструктивных изменений. Все это позволяет интенсифицировать процессы горения, уменьшить массу и габариты КС и всей ГТУ. Имеющиеся при небольших размерах жаровых труб возможности строгого дозирования потоков воздуха позволяет организовать процесс горения с минимальным количеством вредных выбросов (окислов азота, сажи, угарного газа, несгоревших углеводородов) и управлять полем температур на выходе. Жаровые трубы легче обслуживать и заменять для ремонта.

Важным преимуществом трубчато-кольцевых и индивидуальных камер сгорания является возможность отработки и доводки отдельных жаровых труб на стендах при натурных параметрах (давлении) и умеренных, практически доступных расходах воздуха и топлива. Аналогичные исследования крупных выносных камер сгорания возможны только в составе ГТУ,

В выносных камерах сгорания горелки расположены дальше от турбины и отделены от неё трактами с поворотом газового потока. Неравномерность температурного поля на входе в турбину и опасность проскоков пламени и повреждения турбины при неисправности горелок при этом меньше. Потери давления также обычно уменьшаются, так как при больших объемах затраты на перемешивание могут быть уменьшены (скорости движения воздуха меньше).

Вследствие значительного времени пребывания топливовоздушной смеси в зоне горения потери с недожогом и концентрации в продуктах сгорания угарного газа и несгоревших углеводородов могут быть невелики даже при сжигании тяжелых жидких топлив с повышенным содержанием углерода или низкокалорийных газов. При больших размерах факела его коэффициент теплового излучения близок к единице и мало изменяется в зависимости от характеристик жидких топлив. Это также облегчает сжигание их тяжелых сортов.

Рис.15.? Выносная КС ГТ-25-700-2.

1 – наружный корпус; 2 – жаровая труба; 3 – фронтовое устройство; 4 – горелки; 5 – сопла смесителя; 6 – подвод воздуха из КВД.

Выносные камеры создают возможность осмотра и ремонта изнутри их деталей и газового тракта, а также сопловых лопаток I ступени турбины.

Вместе с тем в больших выносных КС труднее организовать смешение и контролировать температуры факела, так чтобы выбросы были минимальными. Такие камеры транспортируются отдельно и присоединяются к турбогруппе при монтаже. Для вывода воздуха и ввода горячих газов в турбомашину необходимы крупногабаритные газоходы, ослабляющие корпус турбомашины. Прочность и газоплотность их внутреннего тракта обеспечить трудно. См.2.2. -2.4.

Несмотря на имеющийся опыт проектирования и отработку конструкций камер сгорания на моделях для обеспечения их работоспособности на промышленных ГТУ приходится выполнять доводку КС в составе ГТУ и вносить в конструкцию существенные изменения.

Из-за возникновения вихрей и зон пониженного давления в кольцевом канале между жаровой трубой и наружным корпусом в выносных КС наблюдались отложения кокса, перегрев и трещины на жаровой трубе, протечки газов через отверстия в ней и вынос кокса на внутреннюю стенку корпуса, а также увеличение неравномерности температур на выходе. Для упорядочения течения воздуха в кольцевом зазоре устанавливаются направляющие лопатки.

Обеспечение требуемого уровня температур и прочности деталей горячего тракта вызывает наибольшие трудности. Причинами трещин и поломок ненагруженных деталей жаровых труб КС часто бывают усталость под действием знакопеременных напряжений, особенно в тех случаях, когда КС работает неустойчиво, или термоусталость в результате теплосмен при пусках и остановах ГТУ. Трещины образуются в местах сварки и у отверстий и щелей в жаровых трубах для прохода воздуха, а также на газосборниках, соединяющих жаровые трубы с проточной частью турбины.

На ГТУ М7001 (Дженерал Электрик), например, из-за акустического резонанса в газосборниках возникали повышенные вибрационные напряжения, приводившие к образованию трещин, а затем щелей и отверстий. Уменьшение расхода воздуха через неисправную ЖТ и попадание отделившихся кусков металла в проточную часть турбины создавали опасность серьезных аварий. Для повышения прочности газосборников было введено гибкое соединение между ними и обоймой сопловых лопаток турбины; выполнены дополнительные отверстия для подвода охлаждающего воздуха и снижены температуры в зоне наибольших напряжений; скорректировано управление ВНА компрессора для изменения резонансных характеристик при частичных нагрузках; толщина стенок газосборников увеличена в 1,5 раза, а форма улучшена. Для уменьшения износа в местах механического контакта введена подвеска газосборников. Качество их изготовления улучшено путем совершенствования технологии и автоматизации сварки, проведения термообработки и рентгеноскопии швов.

На ГТУ М7001 были случаи смятия ЖТ из-за резкого повышения перепадов давления на них (до 130 – 150 кПа) при отключении топлива в момент внезапных остановов ГТУ. Прочность ЖТ была повышена установкой специальных жестких колец и устройством дополнительных решеток для прохода охлаждающего воздуха, облегчавших его доступ в зону горения, а процесс отключения ГТУ был растянут с 5- 10 до 15о мс, чтобы уменьшить перепад давления на ЖТ до 80 кПа. Радикальное снижение температуры и повышение прочности было достигнуто, однако, лишь после изменения конструкции, укорочения ЖТ и использования щелевого охлаждения

Рис.15.?. Модернизированная КС ГТУ М7001.

а) – конструктивная схема; б) – щелевое охлаждение: 1 – наружный корпус индивидуальной КС; 2- жаровая труба; 3- газосборник; 4 - фронтовое устройство; 5 – подвод топлива; 6 – свеча зажигания (одна из двух на 10 индивидуальных КС; 7 – экран; 8 – опора ЖТ; 9 – подвод воздуха из компрессора; 10 – вторичный воздух; 11 – приваренное точечной сваркой и опаянное кольцо; 12 – отверстия для ударного охлаждения; 13 – выходящая из щели непрерывная защитная пелена воздуха.

Перегрев деталей КС может вызывать несимметричность факела пламени. В ГТУ мощностью 35 – 85 МВт фирмы Броун Бовери (типы 9 и 13) с КС, установленной над ГТУ, выгорание металла наблюдалось в нижней части ЖТ при образовании очагов горения на выходящих из смесителя струях воздуха. причинами изменения положения факела в пространстве и соприкосновения его со стенками, вызывающего деформации и прогар ЖТ, могут быть также нарушение работы форсунок (газораздающих насадков), повреждение завихрителей и усталостные ли термоусталостные повреждения ЖТ или газосборников, нарушающие осевую симметрию потоков топлива и воздуха.

Ухудшение качества распыла жидкого топлива или наличие в газообразном топливе горючих конденсатов, в результате которых капли топлива попадают на стенки ЖТ и догорают на них, также могут вызвать перегрев и выгорание металла. Попадание в КС больших количеств газового конденсата приводит к очень тяжелым авариям. Вблизи фронтового устройства происходит переобогащение смеси и срыв факела, а горение стабилизируются на лопатках турбины, которые вследствие этого перегреваются и разрушаются.

Неравномерность температур на выходе из КС определяется конструкцией смесителя и может возрастать при затягивании горения и несимметричности подвода топлива или воздуха. На установке ГТ-100, например, коэффициент неравномерности температур газов и характер полей температуры на выходе из отдельных ЖТ, несимметричны из-за не вполне одинакового их положения относительно статорных элементов, не зависит от режима работы и вида топлива. Снижение неравномерности и благоприятное профилирование температуры по радиусу на входе в проточную часть были достигнуты путем несимметричного расположения и изменения числа и размеров сопл смесителя.

В некоторых выносных КС для выравнивания поля температур на выходе и определения в наладочный период оптимальных сечений сопл смесителя применялось их ручное регулирование с помощью заслонок. В эксплуатационной практике это нецелесообразно. При ограниченной информации о температуре газов изменение их неравномерности свидетельствует о возможном дефекте, который необходимо выявить и устранить, а не скрыть, устранив регулированием смесителя признак его появления.

Выравнивание температур происходит на некоторой длине после смесителя >1 – 2. Наличие поворотов между Кс и турбиной способствует некоторому уменьшению неравномерности температур, в угловых входных патрубках турбин их неравномерность уменьшается в 3 – 5 раз.

Серьезные неполадки могут быть вызваны неудовлетворительной работой форсунок жидкого топлива. На некоторых ГТУ наблюдался износ рабочих каналов форсунок из-за наличия в топливе и распыливающем воздухе твердых частиц. Чтобы избежать его, элементы форсунок выполняют из твердых материалов или упрочняют, топливо и распыливающий воздух фильтруют, а при конструировании трактов избегают повышенной турбулентности и прямого удара потока о стенки. Чтобы избежать неплотностив соединениях и протечек топлива с образованием кокса или даже очагов горения на форсунках, тщательность их изготовления и сборки контролируют на стендах перед установкой на ГТУ.

Перегрев, коксование и повреждения форсунок и горелок при работе предотвращают, охлаждая и защищая их постоянной продувкой воздухом, коксование форсунок после остановов и прекращения подачи топлива - быстро сливая его и продувая внутренние тракты форсунок воздухом для удаления остатков топлива. В ГТУ, предназначенных для работы на двух видах топлива, продувку форсунок жидкого топлива при работе на природном газе производят обычно тем же газом, который очищают от пыли, воды и солей, чтобы избежать забивания и коррозии форсунок.

Изменения, которые вносятся для улучшения процесса горения, охлаждения деталей, уменьшения неравномерности поля температур на выходе из КС и т.д., могут неблагоприятно влиять на другие характеристики камер. Так, например, на ГТУ типа V93 фирмы Крафтверкунион наблюдавшееся первоначально дымление было уменьшено путем повышения скоростей первичного воздуха и увеличения его количества подачей через дополнительные отверстия. Частичное закрытие регулируемых отверстий смесителя, которым сопровождались эти мероприятия, и повышение скоростей в них привели к нарушениям течения газа и вызвали поломки лопаток турбины. Надежная работа КС была обеспечена после переделки смесителя; закрытия регулируемых отверстий и устройства 12 конических сопл для ввода воздуха и 4 отверстий постоянного сечения.

Таблица параметров топлив

Вид топлива Топливо Плотность, кг/и3 Стехиометрическое количество воздуха, кг/кг Низшая теплотворная способность, кДж/кг
Для реактивных двигателей Т-1 ГОСТ 10227-02 14,78
ТС-1 ГОСТ 10227-02
Т-2 ГОСТ 10227-02
Т-8 ТУ 38-1-257-69
РТ ГОСТ 16564-71
Т-6 ГОСТ 12308-80
Топливо дизельное Л ГОСТ305-82
З ГОСТ305-82
А ГОСТ305-82
Моторное топливо ДТ ГОСТ 1667-68
ДМ ГОСТ 1667-68
Для ГТУ ТГВК ГОСТ 10433-75
ТГ ГОСТ 10433-75
Дистиллят сернистый Ново-Уфимского НПЗ
Дистиллят малосернистый Волгоградского НПЗ
Природный газ Ставропольское месторождение 0,73 16,72
Саратовское 0,765 16,8
Водород Жидкий водород 34,2