Что такое предел выносливости. Характеристики усталостной прочности материалов. Предел выносливости. Влияние абсолютных размеров поперечного сечения

Основным параметром, характеризующим усталостную прочность материалов, т.е. прочность при повторяемых знакопеременных нагрузках, является предел выносливости у R - то максимальное по абсолютному значению напряжение цикла, при котором еще не происходит усталостное разрушение материала до базового числа N у циклов нагружения. За базовое, т.е. наибольшее число циклов из задаваемых при испытаниях принимают для черных металлов 10 7 циклов нагружения, а для цветных - 10 8 . Индекс в обозначении предела выносливости соответствует коэффициенту асимметрии цикла напряжений при испытаниях. Так, для симметричного цикла предел выносливости обозначается у- 1 , а для отнулевого - у 0 . Предел выносливости материала определяется путем испытания образцов на усталость на испытательных машинах. Наиболее распространенным является испытание образцов при симметричном цикле напряжений. Схема установки для испытания образцов на изгиб показана на рис. 5. Образец 1 вместе с зажимом 2 вращается с постоянной угловой скоростью. На конце образца расположен подшипник 3, нагруженный силой F постоянного направления. Образец подвергается деформации изгиба с симметричным циклом. Максимальные напряжения возникают на поверхности образца в наиболее опасном сечении I - I и определяются как у = М и /W, где М и = F?? - изгибающий момент в сечении; W = 0,1d 3 - момент сопротивления относительно нейтральной оси поперечного сечения образца, круга диаметром d . В представленном положении в точке А действуют растягивающие напряжения, так как образец изгибается выпуклостью вверх. После поворота образца на 180° в точке А будут действовать такие же по величине напряжения сжатия, т.е. -у. При переходе через нейтральную ось напряжение в точке А будет равно нулю.

Путем испытаний до усталостного разрушения одинаковых образцов при разных значениях напряжений цикла строят график, характеризующий зависимость между максимальными напряжениями у и числом циклов до разрушения (циклической долговечностью N). Эта зависимость (рис. 6) называется кривой усталости или кривой Веллера , в честь немецкого ученого, впервые ее построившую. Для построения кривой усталости в координатах у max - N требуется не менее 10 одинаковых образцов, к которым предъявляются жесткие требования по точности размеров, шероховатости поверхности. Первый из образцов нагружают силой F так, чтобы максимальное напряжение цикла у 1 было несколько меньше предела прочности материала (у 1 < у u) и испытывают до разрушения, отмечая (рис. 6) точку А с координатами у 1 и числом циклов до разрушения N 1 .

Второй образец испытывают, создавая в нем напряжение у 2 меньшее, чем в первом (у 2 < у 1) образце. Число циклов до разрушения этого образца будет N 2 (N 2 > N 1). На графике отмечают точку В с координатами у 2 , N 2 . Снижая постепенно в испытываемых образцах максимальное напряжение цикла, испытания проводят до разрушения образцов, пока один из них не разрушится до базового числа N у циклов нагружения. Соединив последовательно плавной линией точки А , В , С , …, построенные при испытаниях образцов, получим кривую усталости. Напряжение, соответствующее базовому числу N у циклов, и есть предел выносливости у - 1 материала при изгибе. На других испытательных машинах аналогично испытанию на изгиб определяют пределы выносливости материала при кручении (ф- 1), при растяжении - сжатии (у- 1р). Экспериментально установлены для многих материалов соотношения между пределами выносливости при изгибе, кручении и растяжении - сжатии. Например, для сталей ф- 1 = 0,55у- 1 ; у- 1р = 0,7у- 1 . Предел выносливости при симметричном цикле нагружения у всех металлов, кроме очень пластичных (медь, техническое железо), меньше предела упругости, с ростом частоты нагружения он незначительно увеличивается.

В литературе предлагаются десятки уравнений, описывающих кривые усталости разных материалов, образцов. В инженерных расчетах чаще всего используют степенное уравнение кривой усталости

у m N = const, (10)

где N - число циклов до разрушения при максимальном напряжении у цикла; m - показатель степени, зависящий от материала, параметров образца, для металлов m = 5 … 10.

Часто срок работы изделий, особенно специального одноразового использования, ограничен, числом циклов нагружения N за время работы меньше базового (N < N у). Уравнение (10)позволяет при расчетах таких изделий на усталостную прочность определять предельно максимальные напряжения в циклах или ограниченный предел выносливости у - 1N , соответствующий заданному числу циклов N нагружения

N = N у (у- 1 /у- 1N) m , (12)

где величины у - 1 , N у , m берут из справочных данных по материалам. Использование уравнений (11) и (12) возможно только при сохранении неизменными физики и механизма усталостного повреждения при сохранении механизма многоцикловой усталости . Многоцикловая усталость гарантировано имеет место, если число циклов до разрушения не менее 10 4 , т.е. N ? 10 4 .

Определение характеристик усталостной прочности материалов путем испытаний на усталость трудоемкий и дорогостоящий процесс из-за длительности и значительного разброса результатов испытаний. Ищут эмпирические зависимости приближенной оценки значений предела выносливости от величины механических свойств материала при статическом нагружении. Так, величина предела выносливости при изгибе с симметричным циклом нагружения для углеродистой стали у- 1 = (0,4 … 0,45)у ut ; для цветных металлов у- 1 = = (0,24 … 0,5)у ut , где у ut - предел прочности материала при растяжении.

Способность материала воспринимать многократное действие переменных напряжений называют выносливостью, а проверку прочности элементов конструкции при действии таких напряжений - расчетом на выносливость (или расчетом на усталостную прочность).

Для получения механических характеристик материала, необходимых для расчетов на прочность при переменных напряжениях, проводят специальные испытания на выносливость (на усталость). Для этих испытаний изготовляют серию совершенно одинаковых образцов (не менее 10 штук).

Наиболее распространены испытания на чистый изгиб при симметричном цикле изменения напряжений; их проводят в следующем порядке.

В первом образце с помощью специальной машины создают циклы напряжений, характеризуемые значениями напряжение принимают достаточно большим (немного меньшим предела прочности материала ), для того, чтобы разрушение образца происходило после сравнительно небольшого числа циклов Результат испытания образца наносят на график в виде точки абсцисса которой равна (в принятом масштабе) числу циклов вызвавших разрушение образца, а ордината - значению напряжения (рис. 5.15).

Затем другой образец испытывают до разрушения при напряжениях результат испытания этого образца изображается на графике точкой Испытывая остальные образцы из той же серии, аналогично получают точки IV, V и т. д. Соединяя полученные по данным опытов точки плавной кривой, получают так называемую кривую усталости, или кривую Вёлера (рис. 5.15), соответствующую симметричным циклам

Аналогично могут быть получены кривые усталости, соответствующие циклам с другими значениями коэффициента асимметрии

Разрушение материала при однократном нагружении происходит в тот момент, когда возникающие в нем напряжения равны пределу прочности Следовательно, кривые усталости при имеют ординаты атах, равные

Кривая выносливости (рис. 5.15) показывает, что с увеличением числа циклов уменьшается максимальное напряжение, при котором происходит разрушение материала. Кривая усталости для мало или среднеуглеродистой, а также для некоторых марок легированной стали имеет горизонтальную асимптоту. Следовательно, при данном значении коэффициента асимметрии R и максимальном напряжении, меньшем некоторой величины, материал не разрушается, как бы велико ни было число циклов.

Наибольшее (предельное) максимальное напряжение цикла, при котором не происходит усталостного разрушения образца из данного материала после произвольно большого числа циклов, называют пределом выносливости. Таким образом, предел выносливости равен ординате асимптоты кривой усталости. Его обозначают ад; при симметричном цикле коэффициент асимметрии и предел выносливости при этом цикле обозначают (см. рис. 5.15).

Совершенно очевидно, что при испытании образца невозможно бесконечно большое число раз повторить один и тот же цикл напряжений, но в этом и нет необходимости. Ординаты атах кривой усталости для некоторых материалов (мало- и среднеуглеродистой стали и др.) после некоторого числа циклов (равного нескольким миллионам) почти не изменяются; поэтому числу циклов, даже в несколько раз большему, на кривой усталости соответствуют такие же максимальные напряжения. В связи с этим число циклов (при испытании материала на выносливость) ограничивают некоторым пределом, который называют базовым числом циклов. Если образец выдерживает базовое число циклов, то считается, что напряжение в нем не выше предела выносливости. Для стали и чугуна базовое число циклов принимают равным 107.

Предел выносливости для стали при симметричном цикле в несколько раз меньше предела прочности (в частности, для углеродистой стали 00,430).

Кривые усталости для цветных металлов и сплавов и некоторых легированных сталей не имеют горизонтальной асимптоты, и, следовательно, такие материалы могут разрушиться при достаточно большом числе циклов, даже при сравнительно малых напряжениях.

Поэтому понятие предела выносливости для указанных материалов условно. Точнее, для этих материалов можно пользоваться лишь понятием предел ограниченной выносливости, называя так наибольшее значение максимального (по абсолютной величине) напряжения цикла, при котором образец еще не разрушается при определенном (базовом) числе циклов. Базовое число циклов в рассматриваемых случаях принимают очень большим - до .

В случаях, когда срок службы элемента конструкции, в котором возникают переменные напряжения, ограничен, максимальные напряжения могут превышать предел выносливости; они, однако, не должны быть больше предела ограниченной выносливости, соответствующего числу циклов за время работы рассчитываемого элемента.

Следует заметить, что предел выносливости при центральном растяжении-сжатии образца составляет примерно 0,7-0,9 предела выносливости при симметричном цикле изгиба. Это объясняется тем, что при изгибе внутренние точки поперечного сечения напряжены слабее, чем наружные, а при центральном растяжении-сжатии напряженное состояние однородно. Поэтому при изгибе развитие усталостных трещин происходит менее интенсивно

Предел выносливости при симметричном цикле кручения для стали составляет в среднем 0,58 (58% предела выносливости при симметричном цикле изгиба).


Введение

Для успешного изучения материальной части техники войск РХБ защиты необходимы глубокие знания общетехнических дисциплин. Многие детали машин в процессе эксплуатации подвергаются циклическим напряжениям. Поэтому курсанты должны иметь представление о параметрах и видах циклов напряжений, явлении и пределе выносливости.

Поэтому материал данной лекции имеет большое значение. Цель данной лекции дать курсантам основные термины и определения, связанные с циклическими напряжениями, изучить вопрос расчета элементов конструкций на прочность при данном виде нагружения.

Понятие о циклических напряжениях. Параметры и виды циклов напряжений

К динамическим нагрузкам, несмотря на отсутствие значительных инерционных сил, можно отнести периодические многократно повторяющиеся (циклические) нагрузки, действующие на элементы конструкции. Такого рода нагружения характерны для большинства машиностроительных конструкций, таких, как оси, валы, штоки, пружины, шатуны и т.д.

Прочность материалов при повторно-переменном нагружении во многом зависит от характера изменения напряжений во времени.

– переменная нагрузка с установившимся во времени характером изменения, значения которой повторяются через определенный промежуток (период) времени.

Цикл напряжений – совокупность всех значений переменных напряжений за время одного периода изменения нагрузки.

Обычно цикл напряжений характеризуется двумя основными параметрами цикла: и - максимальным и минимальным напряжениями цикла.

Среднее напряжение цикла .

Амплитудное напряжение цикла .

Коэффициент асимметрии цикла напряжений .

В зависимости от величины перечисленных характеристик циклы напряжений могут быть подразделены на следующие основные виды:

Симметричный цикл – максимальное и минимальное напряжения равны по абсолютной величине и противоположны по знаку , R = -1.

Асимметричный цикл – максимальное и минимальное напряжения не равны по абсолютной величине , при этом асимметричный цикл может быть знакопеременным или знакопостоянным.



Знакопеременный цикл – максимальное и минимальное напряжения не равны по абсолютной величине и противоположны по знаку , , .

Знакопостоянный цикл – максимальное и минимальное напряжения не равны по абсолютной величине и имеют одинаковый знак , , .

Отнулевой (пульсирующий) цикл – максимальное или минимальное напряжения равны нулю или , или .

Явление усталости. Кривая усталости. Предел выносливости

Как показывает практика, нагрузки, циклически изменяющиеся во времени по величине или по величине и по знаку, могут привести к разрушению конструкции при напряжениях, существенно меньших, чем предел текучести (или предел прочности). Такое разрушение принято называть «усталостным». Материал как бы «устает» под действием многократных периодических нагрузок.

Усталостное разрушение – разрушение материала под действием повторно-переменных напряжений.

Усталость материала – постепенное накопление повреждений в материале под действием переменных напряжений, приводящих к образованию трещин в материале и разрушению.

Выносливость – способность материала сопротивляться усталостному разрушению.

Физические причины усталостного разрушения материалов достаточно сложны и еще не до конца изучены. Одной из основных причин усталостного разрушения принято считать образование и развитие трещин.

Механизм усталостного разрушения во многом связан с неоднородностью реальной структуры материалов (различие размеров, очертаний, ориентации соседних зерен металла; наличие различных включений – шлаков, примесей; дефекты кристаллической решетки, дефекты поверхности материала – царапины, коррозия и т. д.). В связи с указанной неоднородностью при переменных напряжениях на границах отдельных включений и вблизи микроскопических пустот и различных дефектов возникает концентрация напряжений, которая приводитк микропластическим деформациям сдвига некоторых зерен металла, при этом на поверхности зерен могут появляться полосы скольжения,и накоплению сдвигов, которое на некоторых материалах проявляется в виде микроскопических бугорков и впадинок – экструзий и интрузий. Затем происходит развитие сдвигов в микротрещины, их рост и слияние; на последнем этапе появляется одна или несколько макротрещин, которая достаточно интенсивно развивается (растет). Края трещины под действием переменной нагрузки притираются друг об друга, и поэтому зона роста трещины отличается гладкой (полированной) поверхностью. По мере роста трещины поперечное сечение детали все больше ослабляется, и, наконец, происходит внезапное хрупкое разрушение детали, при этом зона хрупкого долома имеет грубозернистую кристаллическую структуру, как при хрупком разрушении.

Кривая усталости (кривая Веллера) строится на основании результатов усталостных испытаний при симметричном цикле. Она показывает, что с увеличением числа цикла максимальное напряжение, при котором происходит разрушение материала, значительно уменьшается. При этом для многих материалов, например углеродистой стали, можно установить такое наибольшее напряжение цикла, при котором образец не разрушается после любого числа циклов (горизонтальный участок диаграммы), называемое пределом выносливости ().

Предел выносливости (усталости) – наибольшее (предельное) напряжение цикла, при котором не происходит усталостного разрушения образца после произвольно большого числа циклов.

Так как испытания нельзя проводить бесконечно большое время, то число циклов ограничивают некоторым пределом, который называют базовым числом циклов. В этом случае, если образец выдерживает базовое число циклов (для черных металлов – N = 10 7), то считается, что напряжение в нем не выше предела выносливости.

Кривые усталости для цветных металлов не имеют горизонтальных участков, поэтому для них за базовое число циклов увеличивается до N = 10 8 и устанавливается предел ограниченной выносливости.

В реальных конструкциях подавляющее число деталей работает при ассиметричном нагружении.

Диаграмма предельных напряжений (диаграмма Смита) строится, как минимум, по трем режимам нагружения (по трем точкам), для каждого из которых определяют предел выносливости.

Первый режим (точка 1) – обычный симметричный цикл нагружения ( , , , ).

Второй режим (точка 2) – асимметричный цикл нагружения, как правило, отнулевой ( , , , ).

Третий режим (точка 3) – простое статическое растяжение ( , ).

Полученные точки соединяют плавной линией, ординаты точек которой соответствуют пределам выносливости материала при различных значениях коэффициента асимметрии цикла.

Луч, проходящий под углом через начало координат диаграммы предельных напряжений, характеризует циклы с одинаковым коэффициентом асимметрии R :

.

Диаграмма предельных амплитуд (диаграмма Хейга) строится в координатах: среднее напряжение цикла – амплитуда цикла (рисунок 7). При этом для ее построения необходимо провести усталостные испытания так же как минимум для трех режимов: 1 – симметричный цикл; 2 – отнулевой цикл; 3 – статическое растяжение.

Соединяя полученные точки плавной кривой, получают график, характеризующий зависимость между значениями предельных амплитуд и значениями предельных средних напряжений в цикле.

Кроме свойств материала, на усталостную прочность оказывают влияние следующие факторы: 1) наличие концентраторов напряжений; 2) масштабный фактор, то есть влияние абсолютных размеров детали (чем больше размеры детали, тем ниже усталостная прочность); 3) качество обработки поверхности (с уменьшением шероховатости поверхности детали растет усталостная прочность); 4) эксплуатационные факторы (температура, коррозия, частота нагружения, радиационное облучение и т.д.); 5) наличие поверхностного слоя, упрочненного различными технологическими методами.

напряжение усталость кривая прочность

Многие детали машин и механизмов в процессе эксплуатации подвергаются повторно-переменным (циклическим) напряжениям, что может вызвать образование трещин и разрушение даже при напряжениях ниже 0,2.

Разрушение металлов и сплавов в результате многократного повторно-переменного напряжения носит название усталости, а свойство металлов сопротивляться усталости называетсявыносливостью (ГОСТ 23207-78).

Природа усталостного разрушения заключается в следующем. Металлы, как известно, состоят из большого числа различно ориентированных зерен, которые вследствие анизотропии оказывают неодинаковое сопротивление действию внешних сил. Зерна, неблагоприятно расположенные по отношению к направлению действия внешних сил, оказываются слабыми, и пластичная деформация в них произойдет при напряжениях ниже предела текучести, в других же зернах приложенная нагрузка вызовет лишь упругую деформацию.

Многократная пластическая деформация при действии повторно-переменных нагрузок приводит к образованию микротрещины, которая, увеличиваясь, превращается в зону усталостного разрушения.

Исследования на усталость проводят для определения предела выносливости , под которым понимают максимальное напряжение цикла, которое выдерживает материал, не разрушаясь при достаточно большом числе повторно-переменных нагружений (циклов).

Предел выносливости при симметричном цикле обозначается -1. Предел выносливости чаще определяют на вращающемся образце (гладком или с надрезом) с приложением изгибающей нагрузки по симметричному циклу.

Для этого используют не менее десяти образцов, каждый из которых испытывается до разрушения только на одном уровне напряжений.

По результатам испытаний отдельных образцов в координатах «напряжение-число циклов» строят кривую, по которой и определяют предел выносливости -1 (рис. 21).

Для тех металлов и сплавов, у которых нет горизонтального участка выносливости, испытания, ограничивают определением «ограниченного предела выносливости», который для сталей равен 10 млн., а для цветных сплавов 100 млн. циклов.

Рис. 21.Схема испытания и кривая выносливости

Порядок выполнения работы

    Установить длину рабочей части и площадь поперечного сечения образца до испытания.

    Провести испытания образца на растяжение с записью диаграммы.

    По диаграмме растяжения определить предел пропорциональности, предел текучести, предел прочности.

    Определить относительное удлинение и сужение образца.

    Провести испытания на ударную вязкость и определить ее значение.

Контрольные вопросы

    Виды механических испытаний металлов.

    Какие характеристики определяют при испытании на растяжении?

    Что такое ударная вязкость?

    Как проводятся испытания на ударную вязкость?

    Что такое усталость, выносливость и предел выносливости металлов?

    Как определяется предел выносливости?

ЛАБОРАТОРНАЯ РАБОТА №4

Влияние холодной пластической деформации на структуру и свойства стали

Цель работы: изучить влияние холодной пластической деформации на структуру и свойства (твердость) малоуглеродистой стали; изучить влияние температуры нагрева на структуру и свойства (твердость) холоднодеформированной малоуглеродистой стали.

Приборы и оборудование: набор готовых микрошлифов, микроскоп МИМ-7, твердомеры, штангенциркуль.

Пластическая деформация и рекристаллизация

Холодная пластическая деформация вызывает в металле структурные изменения, а, следовательно, и изменение свойств металла.

Явления, возникающие в металле при пластической деформации, многообразны. Условно их можно разделить на три группы:

а) изменение формы и размеров кристаллов (зерен);

б)изменение их кристаллографической пространственной ориентировки;

в) изменение тонкого внутреннего строения каждого кристалла.

Пластическая деформация осуществляется путем скольжения (сдвига) или двойникования. Скольжение (сдвиг) состоит в перемещении одной части кристалла относительно другой по определенным плоскостям и направлениям. Двойникование осуществляется путем поворота некоторого объема кристалла на определенный угол.

Многочисленные исследования показывают, что скольжение и поворот осуществляются по плоскостям и направлениям с наиболее плотной упаковкой атомов. Чем больше в металле таких плоскостей, тем выше его способность к пластической деформации. Металлы и сплавы с кубическими решетками К12 и К8 имеют большую пластичность, чем металлы и сплавы с гексагональными решетками Г12 и Г6.

Вдоль плоскостей, по которым произошел сдвиг, и в прилегающих к ним объемах происходит искажение кристаллической решетки, которое вызывает упрочнение сплава. Поэтому последующее скольжение возникает уже в другой параллельной плоскости и при большем напряжении.

Процесс скольжения нельзя представлять себе как одновременное перемещение всех атомов, находящихся в плоскости скольжения, так как для группового перемещения атомов требуются напряжения в сотни раз большие, чем напряжения скольжения. Например, для монокристаллов железа наименьшая теоретическая прочность скольжения равна 23000 МПа, а реальная прочность скольжения составляет 290 МПа, что почти в 100 раз меньше теоретической; для алюминия реальная прочность почти в 500 раз меньше теоретической, для меди в 1540 раз.

Такое большое расхождение между теоретической и реальной прочностью металлов вызвано наличием в реальных кристаллах многочисленных дефектов кристаллической решетки.

Сравнительно легкое перемещение атомов по плоскостям скольжения объясняется наличием в этих плоскостях линейных дефектов – дислокаций. Дислокации бывают линейные и винтовые. Образование линейной дислокации можно представить как внедрение в идеально построенный кристалл лишней кристаллографической полуплоскости атомов, называемой экстраплоскостью (рис. 22).

Рис. 22. Схема образования линейных дислокаций:

АВ – линия дислокации; CD – плоскость скольжения линейной дислокации

Нижний край экстраплоскости АВ вызывает большое искажение в кристаллической решетке, которое называется линией дислокации. Вокруг линии дислокации концентрируются все упругие искажения кристаллической решетки. Над линией дислокации, где имеется экстраплоскость, кристаллическая решетка сжимается, а под линией дислокации, где отсутствует экстраплоскость, растягивается. Длина дислокации может достигать нескольких тысяч межатомных расстояний решетки.

При движении дислокаций происходит смещение атомов на величину, меньшую атомного расстояния, для чего требуются небольшие усилия. Происходит это потому, что атомы, лежащие на линии дислокации, находятся в неравновесном состоянии; смещенные из своих нормальных положений дислоцированные атомы перейдут в равновесное положение даже при небольшом напряжении, а атомы из нормального положения в дислоцированные.

В процессе пластической деформации происходит не только движение имеющихся в кристалле дислокаций, но и образуется большое количество новых дислокаций в различных кристаллографических плоскостях и направлениях. Если на пути движения дислокации встречаются препятствия в виде другой дислокации или дефектов другого вида, то процесс движения дислокации затормаживается, и для преодоления этих препятствий требуются большие внешние усилия.

Плотность дислокаций в недеформированном металле может составлять 10 6 –10 8 дислокаций в 1 см 2 , после деформации в этом же металле она достигает 10 10 –10 12 дислокаций в см 2 .

Таким образом, создание дислокаций – одно из важнейших явлений, возникающих при пластической деформации.

При определенной (критической) плотности дислокаций и других дефектов и искажений кристаллической решетки прочность материала увеличивается, так как создаются препятствия для свободного движения дислокаций. Чем больше искажена решетка на межзеренных и межблоковых границах, тем больше затруднено скольжение по кристаллографическим плоскостям и направлениям.

При пластической деформации поликристаллического тела зерна деформируются по разному: в первую очередь будут деформироваться те зерна, в которых плоскости легкого скольжения наиболее благоприятно расположены по отношению к приложенной силе.

В процессе развития пластической деформации изменяется форма зерен, наблюдаются повороты зерен относительно друг друга, дробление зерен и образование их определенной кристаллографической ориентации – возникает текстура деформации. По отношению к действующей силе зерна вытягиваются при растяжении и располагаются перпендикулярно к ней при сжатии. Металл приобретает как бы волокнистую структуру. Линиями волокон являются всевозможные примеси, расположенные по границам зерен. Текстурованный материал анизотропен, т.е. механические и физические свойства по разным направлениям различны.

Таким образом, пластическая деформация, каким бы способом она не производилась (растяжением, сжатием, изгибом, прокаткой, волочением и т.д.), вызывая искажения кристаллической решетки, дробление блоков мозаичной структуры, изменяя форму зерен и образуя текстуру, приводит к изменению всех свойств металлов и сплавов.

Характеристики прочности (твердость, предел прочности, предел упругости, предел текучести) с увеличением степени пластической деформации растут; характеристики пластичности и вязкости (относительное удлинение, относительное сужение, ударная вязкость) падают. В процессе пластической деформации изменяются физические свойства: уменьшается плотность, сопротивляемость коррозии, магнитная проницаемость, увеличивается коэрцитивная сила, увеличивается электросопротивление, изменяется термоэлектродвижущая сила.

Деформация со степенью более 70% увеличивает предел прочности в полтора – два раза, а иногда и в три раза, в зависимости от природы металла и вида обработки давлением. Относительное удлинение при этом снижается в 10–20, а иногда и в 30–40 раз.

Упрочнение металлов и сплавов, полученное в процессе пластической деформации, называется нагартовкой или наклепом .

Состояние металла, возникающее в результате наклепа, является неустойчивым, метастабильным, с повышенной свободной энергией. Поэтому даже при комнатных температурах в нагартованном металлепротекают самопроизвольно диффузионные процессы, приводящие деформированный металл в более равновесное состояние. При повышенных температурах эти процессы протекают быстрее. В зависимости от степени деформации, температуры и времени нагрева в нагартованном металле протекают разные по своему типу структурные изменения, которые подразделяют на две стадии: возврат и рекристаллизацию . В свою очередь стадия возврата включает отдых и полигонизацию, а стадия рекристаллизации – первичную рекристаллизацию (рекристаллизация обработки) и собирательную, или вторичную рекристаллизацию.

При отдыхе (или возврате первого рода) происходит диффузионное перемещение и аннигиляция (взаимное уничтожение) точечных дефектов, уменьшение концентрации вакансий. За сет этого частично снимаются упругие искажения кристаллической решетки и, следовательно, частично восстанавливаются механические и физические свойства. Микроструктура металла и кристаллографическая ориентация его зерен практически не изменяются. Температура отдыха для железа соответствует 300–350ºС.

Полигонизация (или возврат второго рода) протекает при более высокой температуре (для железа 450–500ºС). Она характеризуется тем, что происходит планомерное перемещение дислокаций и группировка дислокаций в ряды (рис. 23). Дислокации выстраиваются друг над другом, образуя вертикальные дислокационные малоугловые границы, которые разделяют соседние субзерна с небольшой разориентировкой решеток. В результате происходит дальнейшее снятие упругих искажений решетки и более полное восстановление физических свойств. Механические свойства при этом изменяются незначительно, т.к. процессы протекают внутри зерна, а сами зерна не изменяют свою форму.

При более высоких температурах (t нр – температура начала рекристаллизации, рис. 24), определенных для каждого материала, начинается процесс образования новых зерен взамен волокнистой

а) б)

Рис. 23. Схема полигонизации:

а – хаотичное распределение дислокаций в изогнутом кристалле; б – стенки из дислокаций после полигонизации

структуры. При этом происходит полное разупрочнение деформированного материала. Механические и физические свойства приобретают прежние значения (см. рис. 24). Образование и рост новых зерен с менее искаженной решеткой за счет исходных деформированных зерен называется рекристаллизацией обработки , или первичной рекристаллизацией. Движущей силой рекристаллизации обработки является энергия искажений деформированных зерен.

Температура начала рекристаллизации (21) зависит от многих факторов и прежде всего от степени деформации материала, химического состава, количества примесей в нем; от природы материала, от величины зерна до деформации, от температуры деформирования. Определено, что

Т рекр = а Т пл. (21)

где Т рекр. – абсолютная температура рекристаллизации;

а – коэффициент, учитывающий вышеперечисленные факторы;

Т пл. – абсолютная температура плавления данного вещества.

Для железа и других металлов технической чистоты минимальная температура рекристаллизации определяется по формуле Л.А. Бочвара (22):

Т рекр = (0,3÷0,4)Т пл (22)

Повышение температуры (t 1 , см. рис. 24) или увеличение времени выдержки приводит к росту зерен, т.е. происходит поглощение мелких, термодинамически неустойчивых зерен более крупными. Такой процесс получил названиесобирательной, или вторичной рекристаллизации. Эта стадия рекристаллизации нежелательна для производства, так как она приводит к образованию разнозернистости.

Температура рекристаллизации играет огромное практическое значение. Чтобы пластическая деформация создавала в материале упрочнение (наклеп), она должна осуществляться при температурах ниже температуры рекристаллизации. Такая обработка давлением называется холодной. Если же обработка давлением производится при температурах выше температуры рекристаллизации, то возникающее при деформации упрочнение будет сниматься процессом рекристаллизации и материал разупрочняется. Такая обработка давлением называетсягорячей.

Термическая операция, заключающаяся в нагреве деформированного материала до температуры выше Т рекр, выдержке и последующем медленном охлаждении (с печью), называетсярекристаллизационным отжигом.

Практически температура рекристаллизационного отжига выбирается выше расчетной обычно на 200–300ºС для ускорения процесса рекристаллизации. Для железа и низкоуглеродистой стали эта температура принимается 650–700ºС.

Рис. 24. Влияние нагрева на механические свойства и микроструктуру холоднодеформированного металла

Установлено, что зерно растет особенно сильно после небольшой степени деформации, называемой критической степенью деформации ε кр. (рис. 25).

Критическая степень деформации для железа равна 5–6%; для малоуглеродистой стали 7–15%.

При критической степени деформации возможно взаимное уничтожение дислокаций при тепловом их движении, что способствует постепенному уменьшению количества дислокаций на границах зерен и слиянию нескольких зерен в одно крупное.

Критическую степень деформации следует избегать, так как после рекристаллизационного отжига крупнозернистая структура обладает пониженной ударной вязкостью, более низкими σ в, σ 0,2 и δ.

Рис. 25. Влияние степени деформации на размер зерна после рекристаллизационного отжига

Первые эксперименты по изучению явления усталостного разрушения провел немецкий ученый и инженер А. Веллер , который сделал следующие выводы.

  • 1. Разрушение конструкции может произойти при напряжениях, меньших, чем а в, и даже меньших, чем g t , если число циклов нагружения достаточно велико.
  • 2. Число циклов, необходимое для разрушения, тем меньше, чем больше напряжения а тах и
  • 3. Всегда можно подобрать такие сочетания а шах и о а, при которых деталь проработает заданное число циклов, не разрушаясь.

В дальнейшем выводы Веллера были дополнены следующими экспериментально подтвержденными гипотезами.

  • 4. Прочность при напряжениях, переменных во времени, в первую очередь зависит от наличия концентраторов напряжений, размеров детали и от состояния поверхностных слоев детали.
  • 5. Прочность при напряжениях, переменных во времени, существенно зависит от числа циклов, но мало зависит от частоты изменения напряжений во времени.
  • 6. Прочность мало зависит от формы цикла и в основном определяется значениями а шах и cr min .

Количественные оценки прочности материалов при напряжениях, переменных во времени, определяются по результатам испытаний. Эксперименты проводятся на тщательно отполированных образцах, диаметр которых меняется в достаточно широких пределах. Для проведения испытаний используются специальные машины, которые согласно принципам возбуждения нагрузки, действующей на образец, делятся на механические, электромеханические и гидравлические машины.

С помощью существующих машин образцы испытываются для разных видов цикла. Наиболее распространенным видом испытаний являются испытания при симметричном цикле нагружения (г = - 1). Схема такой простейшей машины показана на рис. 16.1. Образец У, имеющий круговое поперечное сечение, закреплен в захвате шпинделя 2, который вращается с определенной скоростью. На конце образца закреплен подшипник с помощью которого передается на образец сила постоянного значения и направления F. К шпинделю присоединен счетчик 4, который исчисляет число оборотов с начала испытаний образца до его разрушения.

Для получения характеристики сопротивления усталости согласно ГОСТу необходимо испытание не менее чем 10 одинаковых образцов из проката и 15 образцов из литья. Испытание первого образца происходит при амплитуде напряжений, равной а Л = (0,65-^0,75)а в. По результатам испытаний определяется число циклов JV, которое соответствует разрушению образца. После этого производится испытание нового образца при меньшем значении амплитуды напряжений и снова определяется число циклов, необходимых для разрушения. После последовательного проведения аналогичных испытаний для всех образцов строится график о а = o a (N) (рис. 16.6). Полученная диаграмма называется диаграммой усталостной прочности , или диаграммой Веллера.

В результате многочисленных экспериментов было установлено, что если в условиях комнатной температуры и обычного атмосферного давления (при исключении коррозии) образец из стали низкой и средней прочности или титанового сплава не разрушится при числе циклов изменения напряжений ЛГ Б = 10 7 , то можно считать, что он не разрушится никогда. Таким об-

Рис. 16.6.

раздам на рис. 16.6 соответствует кривая 1. Число циклов N B называется базовым числом циклов испытаний.

Пределом выносливости, или пределом усталостной прочности, называют наибольшее значение максимального напряжения цикла, при котором образец выдерживает, не разрушаясь, базовое число циклов испытаний.

Предел выносливости обозначается буквой а, где индекс г указывает, при каком виде цикла проводились испытания. В случае симметричного цикла коэффициент асимметрии цикла г равен -1, поэтому для такого цикла используется обозначение а,

У диаграмм высокопрочных сталей и цветных металлов, как правило, нет горизонтального участка. Поэтому, как бы мы ни уменьшали величину максимальных напряжений, процесс разрушения образца все же происходит. Аналогичный характер имеют данные для образцов из сталей с низкой прочностью и титановых сплавов, если их испытание производится в условиях высокой температуры или интенсивной коррозии. Диаграмма для таких образцов соответствует кривой 2 на рис. 16.6.

Так как предел выносливости на диаграмме не представляется точно, его определение производится по условному критерию. Условный предел выносливости определяют как значение максимального напряжения, которое может выдержать образец при заданном заранее количестве циклов. Для легированных сталей и цветных металлов принимают N = 10 8 .

Своеобразие эксплуатации отдельных конструкций не всегда требует обеспечения продолжительности работы детали в течение базового числа циклов. Иногда это требование оказывается непомерно строгим, и его удовлетворение вступает в противоречие с другими требованиями, предъявляемыми к детали. Такие ситуации характерны для изделий космической техники, летательных аппаратов и других транспортных средств, когда минимальный вес каждой детали предопределяет лучшее выполнение конструкцией своего служебного назначения. В таких и других особых случаях для расчета деталей вводят понятие ограниченного предела усталостной прочности (а ,) Л, которое соответствует гарантированной работе детали в течение N циклов. Значение N, как правило, меньше, чем число базовых циклов N B . Определение предела ограниченной усталости можно проводить с помощью кривых обычной усталостной прочности. Например, если N = 10 5 , то в соответствии с кривой 2 получим (а,) 10 5 = 540 МПа (см. рис. 16.6).

В результате многочисленных опытов были установлены критерии для приближенной (грубой) оценки предела усталостной прочности детали.

Так, например, для сталей ст, = (0,4-И),5)ст„, а для цветных металлов ст (= = (0,25-^0,50)а„.

Аналогично испытаниям на изгиб проводятся испытания образцов на кручение, при которых реализуется циклическое изменение касательных напряжений. В этом случае можно обобщить все введенные выше понятия, заменив при этом в формулах обозначения для нормальных напряжений ст на обозначения для касательных напряжений т, что будет использовано при дальнейшем изложении материала.

Экспериментально установлено, что для обычных сталей т, = 0,6ст, а для высокопрочных т_, = 0,8ст,.

Как отмечалось ранее, характеристики усталостной прочности связаны с процессом возникновения и распространения в образце трещин, что в свою очередь зависит от характеристик конкретного образца, а также от вида и условий проведения испытаний. С этой точки зрения предел выносливости не является характеристикой материала в чистом виде, чем существенно отличается от других свойств материала, например модуля упругости или коэффициента Пуассона. Поэтому при расчетах следует учитывать параметры конкретной детали и условия ее нагружения, которые отличаются от параметров и условий испытания стандартного образца. Обобщение результатов, полученных при изгибе и кручении, на другие виды нагружения требует взвешенного подхода и определенного опыта, поскольку достоверность расчета существенно снижается.

  • Август Веллер (A. Wohler, 1819-1914) - немецкий ученый, механик и инженер, внесбольшой вклад в научную основу проектирования металлических конструкций в условияхциклического нагружения, автор графического представления зависимости между амплитудами напряжения цикла и числом циклов до разрушения, называемой кривой Веллера.
  • ГОСТ 25.507-85. Расчеты и испытания на прочность в машиностроении. Методы испы тания на усталость при эксплуатационных режимах нагружения. Общие требования.