Таблица тканей строение функции расположение в организме. Строение и функции тканей. Эпителиальная ткань

Ткань - исторически сложившаяся структура клеток и внеклеточного живого вещества, обладающая определенными морфофункциональными свойствами, присущими только данному виду ткани.

Органическое морфофункциональное единство организма достигается только при взаимодействии всех тканей.

В организме различают четыре типа тканей: 1) эпителиальную, 2) соединительную, 3) мышечную и 4) нервную.

Эпителиальная (пограничная) ткань . К эпителиальной ткани относятся эпителиальные клетки, выстилающие поверхность тела, слизистые оболочки всех внутренних органов и полостей организма, а также формирующие железы внешней и внутренней секреции. Эпителий, выстилающий слизистую оболочку, располагается на базальной мембране, а внутренней поверхностью непосредственно обращен к внешней среде. Его питание совершается путем диффузии веществ и кислорода из кровеносных сосудов через базальную мембрану. По форме клеток (рис. 7) различают эпителий плоский (кожа), кубический (капсула клубочка почки), цилиндрический (кишечник), по числу слоев - однослойный и многослойный. Если все эпителиальные клетки достигают базальной мембраны, это однослойный эпителий, а если с базальной мембраной связаны только клетки одного ряда, а другие свободны,- это многослойный. Однослойный эпителий может быть однорядным и многорядным, что зависит от уровня расположения ядер. Иногда одноядерный или многоядерный эпителий имеет мерцательные реснички, обращенные во внешнюю среду.

7. Схема строения различных видов эпителия (по Котовскому). А - однослойный цилиндрический эпителий; Б - однослойный кубический эпителий; В - однослойный плоский эпителий; Г - многорядный эпителий; Д- многослойный плоский неороговевающий эпителий; Е - многослойный плоский ороговевающий эпителий; Ж - переходный эпителий при растянутой стенке органа; Ж1 - при спавшейся стенке органа.

Соединительная ткань . Весьма разнообразна по строению, но все разновидности соединительной ткани развиваются из мезенхимы (средний зародышевый листок). К соединительной ткани относятся кровь и кроветворная ткань, лимфатическая ткань, костная ткань, хрящевая ткань, волокнистая соединительная ткань. Вот почему, учитывая разнообразие строения разновидностей соединительной ткани, их называют тканями внутренней среды.


8. Форменные элементы крови (по В. Г. Елисееву).
1 - эритроцит; 2 - сегментоядерный нейтрофильный лейкоцит; 3 - палочкоядерный нейтрофильный лейкоцит; 4 - юный нейтрофильный лейкоцит; 5 - эозинофильный лейкоцит; 6 - базофильный лейкоцит; 7 - большой лимфоцит; 8 - средний лимфоцит; 9 - малый лимфоцит; 10 - моноцит; 11 - кровяные пластинки (тромбоциты).

Кровь состоит из форменных элементов - эритроцитов, лейкоцитов, тромбоцитов (рис. 8) и жидкой плазмы, в которой содержатся иммунные тела, гормоны, питательные вещества. Кроветворная ткань находится в красном костном мозге, лимфатическая ткань - в лимфатических узлах, селезенке, слизистой оболочке кишечника, печени, вилочковой железе и других органах.

Волокнистые соединительные ткани, помимо клеток, содержат промежуточное вещество в виде эластических, коллагеновых, ретикулярных и аргирофильных волокон, заключенных в основное вещество (рис. 9, 10 11, 12).


9. Рыхлая волокнистая неоформленная соединительная ткань. 1 - коллагеновые волокна; 2 - эластические волокна; 3 - макрофаги; 4 - фибробласты.


10. Плотная оформленная волокнистая соединительная ткань.


11. Жировая ткань. 1-жировые клетки; 2-ядро клетки; 3 - коллагеновые волокна; 4,5 - эластические волокна.


12. Ретикулярные волокна печени.

Соединительнотканные волокна имеются во всех органах и тканях, но наиболее значительно выражены в тех органах, которые испытывают большую механическую нагрузку.

Костная ткань имеет костные клетки, (рис. 13), способные формировать промежуточное твердое вещество, состоящее из минеральных солей, и соединительнотканные волокна.


13. Костная ткань. 1 - костные клетки; 2 - промежуточное вещество с канальцами костных клеток.

Хрящевая ткань разделяется на эластический, гиалиновый и волокнистый хрящи. В эластическом хряще (рис. 14) промежуточное вещество (хондрин) обладает упругими свойствами и содержит, помимо хрящевых клеток, эластические и коллагеновые волокна. Волокнистый хрящ также имеет хондрин, но с большим числом коллагеновых волокон, что делает хрящ более прочным. Гиалиновый хрящ довольно плотный и блестящий, менее прочный, чем другие виды хрящей.


14. Эластический хрящ.

Мышечная ткань . К мышечным тканям относятся поперечнополосатые, гладкие мышечные волокна и сердечная мышца, (рис 15, 16). За счет мышц происходят сокращение внутренних органов, кровеносных сосудов, перемещение частей тела. Поперечнополосатые мышцы сокращаются по желанию человека. Гладкие мышцы и сердечная мышца входят в состав внутренних органов, не подчиняются воле человека и иннервируются вегетативной частью нервной системы.


15. Поперечнополосатые мышечные волокна.


16. Гладкие мышечные волокна эндокарда (по Benninghoff).

Нервная ткань . Состоит из нервных клеток (нейронов) и нейроглии (рис. 17, 18). Нервные клетки имеют различную форму. Нервная клетка снабжена древовидными отростками - дендритами, передающими раздражения от рецепторов к телу клетки, и длинным отростком - аксоном, который заканчивается на эффекторной клетке. Иногда аксон не покрыт миелиновой оболочкой.


17. Глиальные клетки мозга - астроциты (по Clar).

18. Схема строения нервной клетки (по Clar) рис. справа: 1 - тело клетки; 2 - древовидные отростки; 3 - нейрит, покрытый миелиновой оболочкой; 4 - нервные окончания; 5 - мышца.

Нейроглия относится к нервной ткани и, окружая нейроциты (нейроны), представляет опорную ткань в нервной системе.

Все ткани обладают определенными качествами, закрепленными в филогенезе. Тем не менее возможна частичная перестройка ткани при изменении условий существования.

Организм человека - сложная целостная саморегулирующаяся и самовозобновляющаяся система, состоящая из огромного количества клеток. На уровне клеток происходят все важнейшие процессы; обмен веществ, рост, развитие и размножение. Клетки и неклеточные структуры объединяются в ткани, органы, системы органов и целостный организм.

Ткани- это совокупность клеток и неклеточных структур (неклеточных веществ), сходных по происхождению, строению и выполняемым функциям. Выделяют четыре основные группы тканей: эпителиальные, мышечные, соединительные и нервную.

Эпителиальные ткани являются пограничными, так как покрывают организм снаружи и выстилают изнутри полые органы и стенки полостей тела. Особый вид эпителиальной ткани -железистый эпителий - образует большинство желез (щитовидную, потовые, печень и др.), клетки которых вырабатывают тот или иной секрет. Эпителиальные ткани имеют следующие особенности: их клетки тесно прилегают друг к другу, образуя пласт, межклеточного вещества очень мало; клетки обладают способностью к восстановлению (регенерации).

Эпителиальные клетки по форме могут быть плоскими, цилиндрическими, кубическими. По количеству пластов эпителии бывают однослойные и многослойные. Примеры эпителиев: однослойный плоский выстилает грудную и брюшную полости тела; многослойный плоский образует наружный слой кожи (эпидермис); однослойный цилиндрический выстилает большую часть кишечного тракта; многослойный цилиндрический - полость верхних дыхательных путей); однослойный кубический образует канальцы нефронов почек. Функции эпителиальных тканей; защитная, секреторная, всасывания.

Мышечные ткани обусловливают все виды двигательных процессов внутри организма, а также перемещение организма и его частей в пространстве. Это обеспечивается за счет особых свойств мышечных клеток - возбудимости и сократимости. Во всех клетках мышечных тканей содержатся тончайшие сократительные волоконца - миофибриллы, образованные линейными молекулами белков - актином и миозином. При скольжении их относительно друг друга происходит изменение длины мышечных клеток.

Различают три вида мышечной ткани: поперечнополосатую, гладкую и сердечную (рис. 12.1). Поперечнополосатая (скелетная) мышечная ткань построена из множества многоядерных волокноподобных клеток длиной 1-12 см. Наличие миофибрилл со светлыми и темными участками, по-разному преломляющих свет (при рассмотрении их под микроскопом), придает клетке характерную поперечную исчерченность, что и определило название этого вида ткани. Из нее построены все скелетные мышцы, мышцы языка, стенок ротовой полости, глотки, гортани, верхней части пищевода, мимические, диафрагма. Особенности поперечнополосатой мышечной ткани: быстрота и произвольность (т. е. зависимость сокращении от воли, желания человека), потребление большого количества энергии и кислорода, быстрая утомляемость.

Рис. 12.1 . Виды мышечной ткани: а - поперечнополосатая; 6 - сердечная; в - гладкая.

Сердечная ткань состоит из поперечно исчерченных одноядерных мышечных клеток, но обладает иными свойствами. Клетки расположены не параллельным пучком, как скелетные, а ветвятся, образуя единую сеть. Благодаря множеству клеточных контактов поступающий нервный импульс передается от одной клетки к другой, обеспечивая одновременное сокращение, а затем расслабление сердечной мышцы, что позволяет ей выполнять насоснуюфункцию.

Клетки гладкой мышечной ткани не имеют поперечной ис-черченности, они веретеновидные, одноядерные, их длина около 0,1 мм. Этот вид ткани участвует в образовании стенок трубко-образных внутренних органов и сосудов (пищеварительного тракта, матки, мочевого пузыря, кровеносных и лимфатических сосудов). Особенности гладкой мышечной ткани: непроизвольность и небольшая сила сокращений, способность к длительному тоническому сокращению, меньшая утомляемость, небольшая потребность в энергии и кислороде.

Соединительные ткани (ткани внутренней среды) объединяют группы тканей мезодермального происхождения, очень различных по строению и выполняемым функциям. Виды соединительной ткани: костная, хрящевая, подкожная жировая клетчатка, связки, сухожилия, кровь, лимфа и др. Общей характерной чертой строения этих тканей является рыхлое расположение клеток, отделенных друг от друга хорошо выраженным межклеточным веществом, которое образовано различными волокнами белковой природы (коллагеновыми, эластическими) и основным аморфным веществом.

У каждого вида соединительной ткани особое строение межклеточного вещества, а следовательно, и разные обусловленные им функции. Например, в межклеточном веществе костной ткани располагаются кристаллы солей (преимущественно соли кальция), которые и придают костной ткани особую прочность. Поэтому костная ткань выполняет защитную и опорную функции.

Кровь- разновидность соединительной ткани, у которой межклеточное вещество жидкое (плазма), благодаря чему одной из основных функций крови является транспортная (переносит газы, питательные вещества, гормоны, конечные продукты жизнедеятельности клеток и др.).

Межклеточное вещество рыхлой волокнистой соединительной ткани, находящейся в прослойках между органами, а также соединяющей кожу с мышцами, состоит из аморфного вещества и свободно расположенных в разных направлениях эластических волокон. Благодаря такому строению межклеточного вещества кожа подвижна. Эта ткань выполняет опорную, защитную и питательную функции.

Нервная ткань, из которой построены головной и спинной мозг, нервные узлы и сплетения, периферические нервы, выполняет функции восприятия, переработки, хранения и передачи ин-

формации, поступающей как из окружающей среды, так и от органов самого организма. Деятельность нервной системы обеспечивает реакции организма на различные раздражители, регуляцию и координацию работы всех его органов.

Основными свойствами нервных клеток -нейронов, образующих нервную ткань, являются возбудимость и проводимость. Возбудимость - это способность нервной ткани в ответ на раздражение приходить в состояние возбуждения, а проводимость - способность передавать возбуждение в форме нервного импульса другой клетке (нервной, мышечной, железистой). Благодаря этим свойствам нервной ткани осуществляется восприятие, проведение и формирование ответной реакции организма на действие внешних и внутренних раздражителей.

Нервная клетка, или нейрон, состоит из тела и отростков двух видов (рис. 12.2). Тело нейрона представлено ядром и окружающей его областью цитоплазмы. Это метаболический центр нервной клетки; при его разрушении она погибает. Тела нейронов располагаются преимущественно в головном и спинном мозге, т. е. в центральной нервной системе (ЦНС), где их скопления образуют серое вещество мозга. Скопления тел нервных клеток за пределами ЦНС формируют нервные узлы, или ганглии.

Короткие, древовидно ветвящиеся отростки, отходящие от тела нейрона, называются дендритами. Они выполняют функции восприятия раздражения и передачи возбуждения в тело нейрона.

Рис. 12.2 . Строение нейрона: 1 - дендриты; 2 - тело клетки; 3 - ядро; 4 - аксон; 5 - миелиновая оболочка; б - ветви аксона; 7 - перехват; 8 - неврилемма.

Самый мощный и длинный (до 1 м) неветвящийся отросток называется аксоном, или нервным волокном. Его функция состоит в проведении возбуждения от тела нервной клетки к концу аксона. Он покрыт особой белой липидной оболочкой (миелином), выполняющей роль защиты, питания и изоляции нервных волокон друг от друга. Скопления аксонов в ЦНС образуют белое вещество мозга. Сотни и тысячи нервных волокон, выходящих за пределы ЦНС, при помощи соединительной ткани объединяются в пучки - нервы, дающие многочисленные ответвления ко всем органам.

От концов аксонов отходят боковые ветви, заканчивающиеся расширениями - аксоппыми окончаниями, или терминалями. Это зона контакта с другими нервными, мышечными или железистыми метками. Она называется синапсом, функцией которого является передача возбуждения. Один нейрон через свои синапсы может соединяться с сотнями других клеток.

По выполняемым функциям различают нейроны трех видов. Чувствительные (центростремительные) нейроны воспринимают раздражение от рецепторов, возбуждающихся под действием раздражителей из внешней среды или из самого организма человека, и в форме нервного импульса передают возбуждение с периферии в ЦНС.Двигательные (центробежные) нейроны посылают нервный сигнал из ЦНС мышцам, железам, т. е. на периферию. Нервные клетки, воспринимающие возбуждение от других нейронов и передающие его также нервным клеткам, - это вставочные нейроны, или интернейроны. Они располагаются в ЦНС. Нервы, в состав которых входят как чувствительные, так и двигательные волокна, называются смешанными.

Ткань - система клеток и неклеточных образований, которые имеют общее происхождение, строение и выполняют в организме сходные функции. Выделяют четыре основные группы тканей: эпителиальные, соединительные, мышечные и нервные.

Эпителиальные ткани состоят из тесно прилегающих друг к другу клеток. Межклеточного вещества мало. Эпителиальные ткани (эпителий) образуют покровы тела, слизистые оболочки всех внутренних органов и полостей, а также большинство желез. Эпителий располагается на соединительной ткани, обладает высокой способностью к регенерации. По происхождению эпителий может быть производным эктодермы или энтодермы. Эпителиальные ткани выполняют несколько функций:

1) защитную - многослойный эпителий кожи и его производные: ногти и волосы, роговица глаза, ресничный эпителий, выстилающий воздухоносные пути и очищающий воздух;

2) железистую - эпителием образована поджелудочная железа, печень, слюнные, слезные и потовые железы;

3) обменную - всасывание продуктов переваривания пищи в кишечнике, поглощение кислорода и выделение углекислого газа в легких.

Соединительные ткани состоят из клеток и большого количества межклеточного вещества. Межклеточное вещество представлено основным веществом и волокнами коллагена или эластина. Соединительные ткани хорошо регенерируют, все они развиваются из мезодермы. К соединительным тканям относят: кость, хрящ, кровь, лимфу, дентин зубов, жировую ткань. Соединительная ткань выполняет следующие функции:

1) механическую - кости, хрящ, образование связок и сухожилий;

2) соединительную - кровь и лимфа связывают воедино все органы и ткани организма;

3) защитную - выработка антител и фагоцитоз клетками крови; участие в заживлении ран и регенерации органов;

4) кроветворную - лимфатические узлы, селезенка, красный костный мозг;

5) трофическую или обменную - например, кровь и лимфа участвуют в обмене веществ и питании организма.

Клетки мышечных тканей обладают свойствами возбудимости и сократимости. В состав мышечных клеток входят особые белки, способные, взаимодействуя, изменять длину этих клеток. Мышечные ткани участвуют в образовании опорно-двигательного аппарата, сердца, стенок внутренних органов и большинства кровеносных и лимфатических сосудов. По происхождению мышечные ткани являются производными мезодермы. Различают несколько видов мышечных тканей: поперечно-полосатая, гладкая и сердечная. Основные функции мышечной ткани:

1) двигательная - движение тела и его частей, сокращение стенок желудка, кишечника, артериальных сосудов, сердца;

2) защитная - защита органов, находящихся в грудной клетке, и особенно в брюшной полости, от внешних механических воздействий.


Нервная ткань состоит из нервных клеток - нейронов и вспомогательных нейроглиальных клеток, или клеток-спутниц.

Нейрон - элементарная структурно-функциональная единица нервной ткани. Основные функции нейрона: генерация, проведение и передача нервного импульса, который является носителем информации в нервной системе. Нейрон состоит из тела и отростков, причем эти отростки дифференцированы построению и функции (рис. 1.16). Длина отростков у различных нейронов колеблется от нескольких микрометров до 1-1,5 м. Длинный отросток (нервное волокно) у большинства нейронов имеет миелиновую оболочку, состоящую из особого жироподобного вещества - миелина. Она образуется одним из типов нейроглиальных клеток - олигодендроцитами.

Мышечные ткани - это ткани, отличающиеся по структуре и происхождению, но имеют общую способность к сокращению. Состоят из миоцитов - клеток, которые могут воспринимать нервные импульсы и отвечать на них сокращением.

Свойства и виды мышечной ткани

Морфологические признаки:

  • Вытянутая форма миоцитов;
  • продольно размещены миофибриллы и миофиламенты;
  • митохондрии находятся вблизи сократительных элементов;
  • присутствуют полисахариды, липиды и миоглобин.

Свойства мышечной ткани:

  • Сократимость;
  • возбудимость;
  • проводимость;
  • растяжимость;
  • эластичность.

Выделяют следующие виды мышечной ткани в зависимости от морфофункциональных особенностей:

  1. Поперечнополосатая: скелетная, сердечная.
  2. Гладкая.

Гистогенетическая классификация делит мышечные ткани на пять видов в зависимости от эмбрионального источника:

  • Мезенхимные - десмальный зачаток;
  • эпидермальные - кожная эктодерма;
  • нейральные - нервная пластинка;
  • целомические - спланхнотомы;
  • соматические - миотом.

Из 1-3 видов развиваются гладкомышечные ткани, 4, 5 дают поперечнополосатые мышцы.

Строение и функции гладкой мышечной ткани

Cостоит из отдельных мелких веретеновидных клеток. Эти клетки имеют одно ядро и тонкие миофибриллы, которые тянутся от одного конца клетки к другому. Гладкие мышечные клетки объединяются в пучки, состоящие из 10-12 клеток. Это объединение возникает благодаря особенностям иннервации гладкой мускулатуры и облегчает прохождение нервного импульса на всю группу гладких мышечных клеток. Сокращается гладкая мышечная ткань ритмично, медленно и на протяжении длительного времени, способна при этом развивать большую силу без значительных затрат энергии и без утомления.

У низших многоклеточных животных из гладкой мышечной ткани состоят все мышцы, тогда как у позвоночных животных она входит в состав внутренних органов (кроме сердца).

Сокращения этих мышц не зависят от воли человека, т. е. происходят непроизвольно.

Функции гладкой мышечной ткани:

  • Поддерживание стабильного давления в полых органах;
  • регуляция уровня кровяного давления;
  • перистальтика пищеварительного тракта, перемещения по нему содержимого;
  • опорожнение мочевого пузыря.

Строение и функции скелетной мышечной ткани


Cостоит из длинных и толстых волокон длиной 10-12 см. Скелетная мускулатура характеризуется произвольным сокращением (в ответ на импульсы, идущие из коры головного мозга). Скорость ее сокращения в 10-25 раз выше, чем в гладкой мышечной ткани.

Мышечное волокно поперечнополосатой ткани покрыто оболочкой - сарколеммой. Под оболочкой находится цитоплазма с большим количеством ядер, расположенных по периферии цитоплазмы, и сократительными нитями - миофибриллами. Состоит миофибрилла из последовательно чередующихся темных и светлых участков (дисков), обладающих разным коэффициентом преломления света. С помощью электронного микроскопа установлено, что миофибрилла состоит из протофибрилл. Тонкие протофибриллы построены из белка - актина, аболее толстые - из миозина.

При сокращении волокон происходит возбуждение сократимых белков, тонкие протофибриллы скользят по толстым. Актин реагирует с миозином, и возникает единая актомиозиновая система.

Функции скелетной мышечной ткани:

  • Динамическая - перемещение в пространстве;
  • статическая - поддержание определенной позиции частей тела;
  • рецепторная - проприорецепторы, воспринимающие раздражение;
  • депонирующая - жидкость, минералы, кислород, питательные вещества;
  • терморегуляция - расслабление мышц при повышении температуры для расширения сосудов;
  • мимика - для передачи эмоций.

Строение и функции сердечной мышечной ткани


Сердечная мышечная ткань

Миокард построен из сердечной мышечной и соединительной ткани, с сосудами и нервами. Мышечная ткань относится к поперечнополосатой мускулатуре, исчерченность которой также обусловлена наличием разных типов миофиламентов. Миокард состоит из волокон, которые связаны между собой и формируют сетку. Эти волокна включают одно или двухъядерные клетки, что расположены в виде цепочки. Они получили название сократительных кардиомиоцитов.

Сократительные кардиомиоциты длиной от 50 до 120 микрометров, шириной - до 20 мкм. Ядро здесь располагается в центре цитоплазмы, в отличие от ядер поперечно полосатых волокон. Кардиомиоциты имеют больше саркоплазма и меньше миофибрилл, в сравнении со скелетными мышцами. В клетках сердечной мышцы находится много митохондрий, так как непрерывные сердечные сокращения требуют много энергии.

Вторая разновидность клеток миокарда - это проводящие кардиомиоциты, которые формируют проводящую систему сердца. Проводящие миоциты обеспечивают передачу импульса к сократительным мышечным клеткам.

Функции сердечной мышечной ткани:

  • Насосная;
  • обеспечивает ток крови в кровеносном русле.

Компоненты сократительной системы

Особенности строения мышечной ткани обусловлены выполняемыми функциями, возможностью принимать и проводить импульсы, способностью к сокращению. Механизм сокращения заключается в согласованной работе ряда элементов: миофибрилл, сократительных белков, митохондрий, миоглобина.

В цитоплазме мышечных клеток имеются особые сократительные нити - миофибриллы, сокращение которых возможно при содружественной работе белков - актина и миозина, а также при участии ионов Са. Митохондрии снабжают все процессы энергией. Также энергетические запасы образуют гликоген и липиды. Миоглобин необходим для связывания O 2 и формирование его запаса на период сокращения мышцы, так как во время сокращения идет сдавление кровеносных сосудов и снабжение мышц O 2 резко снижается.

Таблица. Соответствие между характеристикой мышечной ткани и ее видом

Вид ткани Характеристика
Гладкомышечная Входит в состав стенок кровеносных сосудов
Структурная единица – гладкий миоцит
Сокращается медленно, неосознанно
Поперечная исчерченность отсутствует
Скелетная Структурная единица – многоядерное мышечное волокно
Свойственна поперечная исчерченность
Сокращается быстро, осознанно

Где находится мышечная ткань?

Гладкие мышцы являются составной частью стенок внутренних органов: желудочно-кишечного тракта, мочеполовой системы, сосудов. Входят в состав капсулы селезенки, кожных покровов, сфинктера зрачка.

Скелетная мускулатуразанимают около 40% от массы тела человека, с помощью сухожилий крепятся к костям. Из этой ткани состоят скелетные мышцы, мышцы рта, языка, глотки, гортани, верхнего участка пищевода, диафрагмы, мимическая мускулатура. Также поперечно полосатые мышцы находится в миокарде.

Чем мышечное волокно скелетной мышцы отличается от гладкой мышечной ткани?

Волокна поперечнополосатых мышц намного длиннее (до 12см), чем клеточные элементы гладкомышечной ткани (0,05-0,4мм). Также скелетные волокна имеют поперечную исчерченность благодаря особому расположению нитей актина и миозина. Для гладких мышц это не характерно.

В мышечных волокнах находится много ядер, а сокращение волокон сильное, быстрое и осознанное. В отличие от гладких мышц, клетки гладкомышечной ткани одноядерные, способны сокращаться в медленном темпе и неосознанно.

Ткань как совокупность клеток и межклеточного вещества. Типы и виды тканей, их свойства. Межклеточные взаимодействия.

В организме взрослого человека различают около 200 типов клеток. Группы клеток, имеющие одинаковое или сходное строение, связанные единством происхождения и приспособленные к выполнению определенных функций, образуют ткани . Это следующий уровень иерархической структуры организма человека - переход с клеточного уровня на тканевой (смотри рисунок 1.3.2).

Любая ткань представляет собой совокупность клеток и межклеточного вещества , которого может быть много (кровь, лимфа, рыхлая соединительная ткань) или мало (покровный эпителий).

Клетки каждой ткани (и некоторых органов) имеют собственное название: клетки нервной ткани называются нейронами , клетки костной ткани - остеоцитами , печени - гепатоцитами и так далее.

Межклеточное вещество химически представляет собой систему, состоящую из биополимеров в высокой концентрации и молекул воды. В нем расположены структурные элементы: волокна коллагена, эластина, кровеносные и лимфатические капилляры, нервные волокна и чувствительные окончания (болевые, температурные и другие рецепторы). Это обеспечивает необходимые условия для нормальной жизнедеятельности тканей и выполнения ими своих функций.

Всего выделяют четыре типа тканей: эпителиальную , соединительную (включая кровь и лимфу), мышечную и нервную (смотри рисунок 1.5.1).

Эпителиальная ткань , или эпителий , покрывает тело, выстилает внутренние поверхности органов (желудка, кишечника, мочевого пузыря и других) и полостей (брюшной, плевральной), а также образует большинство желез. В соответствии с этим различают покровный и железистый эпителий.

Покровный эпителий (вид А на рисунке 1.5.1) образует пласты клеток (1), тесно - практически без межклеточного вещества - прилегающие друг к другу. Он бывает однослойным или многослойным . Покровный эпителий является пограничной тканью и выполняет основные функции: защита от внешних воздействий и участие в обмене веществ организма с окружающей средой - всасывание компонентов пищи и выделение продуктов обмена (экскреция ). Покровный эпителий обладает гибкостью, обеспечивая подвижность внутренних органов (например, сокращения сердца, растяжение желудка, перистальтику кишечника, расширение легких и так далее).

Железистый эпителий состоит из клеток, внутри которых находятся гранулы с секретом (от латинского secretio - отделение). Эти клетки осуществляют синтез и выделение многих веществ, важных для организма. Путем секреции образуются слюна, желудочный и кишечный сок, желчь, молоко, гормоны и другие биологически активные соединения. Железистый эпителий может образовывать самостоятельные органы - железы (например, поджелудочная железа, щитовидная железа, железы внутренней секреции, или эндокринные железы , выделяющие непосредственно в кровь гормоны, выполняющие в организме регулирующие функции и другие), а может являться частью других органов (например, железы желудка).

Соединительная ткань (виды Б и В на рисунке 1.5.1) отличается большим разнообразием клеток (1) и обилием межклеточного субстрата, состоящего из волокон (2) и аморфного вещества (3). Волокнистая соединительная ткань может быть рыхлой и плотной. Рыхлая соединительная ткань (вид Б) присутствует во всех органах, она окружает кровеносные и лимфатические сосуды. Плотная соединительная ткань выполняет механическую, опорную, формообразующую и защитную функции. Кроме того, существует еще очень плотная соединительная ткань (вид В), из нее состоят сухожилия и фиброзные мембраны (твердая мозговая оболочка, надкостница и другие). Соединительная ткань не только выполняет механические функции, но и активно участвует в обмене веществ, выработке иммунных тел, процессах регенерации и заживления ран, обеспечивает адаптацию к меняющимся условиям существования.

К соединительной ткани относится и жировая ткань (вид Г на рисунке 1.5.1). В ней депонируются (откладываются) жиры, при распаде которых высвобождается большое количество энергии.

Важную роль в организме играют скелетные (хрящевая и костная) соединительные ткани . Они выполняют, главным образом, опорную, механическую и защитную функции.

Хрящевая ткань (вид Д) состоит из клеток (1) и большого количества упругого межклеточного вещества (2), она образует межпозвоночные диски, некоторые компоненты суставов, трахеи, бронхов. Хрящевая ткань не имеет кровеносных сосудов и получает необходимые вещества, поглощая их из окружающих тканей.

Костная ткань (вид Е) состоит их костных пластинок, внутри которых лежат клетки. Клетки соединены друг с другом многочисленными отростками. Костная ткань отличается твердостью и из этой ткани построены кости скелета.

Разновидностью соединительной ткани является и кровь . В нашем представлении кровь - это нечто очень важное для организма и, в то же время, сложное для понимания. Кровь (вид Ж на рисунке 1.5.1) состоит из межклеточного вещества - плазмы (1) и взвешенных в ней форменных элементов (2) - эритроцитов, лейкоцитов, тромбоцитов (на рисунке 1.5.2 даны их фотографии, полученные при помощи электронного микроскопа). Все форменные элементы развиваются из общей клетки-предшественницы. Подробнее свойства и функции крови рассматриваются в разделе 1.5.2.3 .

Клетки мышечной ткани (рисунок 1.3.1 и виды З и И на рисунке 1.5.1) обладают способностью сокращаться. Так как для сокращения требуется много энергии, клетки мышечной ткани отличаются повышенным содержанием митохондрий .

Различают два основных типа мышечной ткани - гладкую (вид З на рисунке 1.5.1), которая присутствует в стенках многих, и, как правило полых, внутренних органов (сосуды, кишечник, протоки желез и другие), и поперечно-полосатую (вид И на рисунке 1.5.1) , к которой относятся сердечная и скелетная мышечные ткани. Пучки мышечной ткани образуют мышцы. Они окружены прослойками соединительной ткани и пронизаны нервами, кровеносными и лимфатическими сосудами (смотри рисунок 1.3.1).

Обобщающие сведения по тканям приведены в таблице 1.5.1.

Таблица 1.5.1. Ткани, их строение и функции
Название ткани Специфические названия клеток Межклеточное вещество Где встречается данная ткань Функции Рисунок
ЭПИТЕЛИАЛЬНЫЕ ТКАНИ
Покровный эпителий (однослойный и многослойный) Клетки (эпителиоциты ) плотно прилегают друг к другу, образуя пласты. Клетки мерцательного эпителия имеют реснички, кишечного - ворсинки. Мало, не содержит кровеносных сосудов; базальная мембрана отграничивает эпителий от нижележащей соединительной ткани. Внутренние поверхности всех полых органов (желудка, кишечника, мочевого пузыря, бронхов, сосудов и т.д.), полостей (брюшной, плевральной, суставных), поверхностный слой кожи (эпидермис ). Защита от внешних воздействий (эпидермис, мерцательный эпителий), всасывание компонентов пищи (желудочно-кишечный тракт), выведение продуктов обмена (мочевыделительная система); обеспечивает подвижность органов. Рис.1.5.1 , вид А
Железистый
эпителий
Гландулоциты содержат секреторные гранулы с биологически активные вещества. Могут располагаться поодиночке или образовывать самостоятельные органы (железы). Межклеточное вещество ткани железы содержит кровеносные, лимфатические сосуды, нервные окончания. Железы внутренней (щитовидная, надпочечники) или внешней (слюнные, потовые) секреции. Клетки могут располагаться поодиночке в покровном эпителии (дыхательная система, желудочно-кишечный тракт). Выработка гормонов (раздел 1.5.2.9), пищеварительных ферментов (желчь, желудочный, кишечный, панкреатический сок и др.), молока, слюны, потовой и слезной жидкости, бронхиального секрета и т.д. Рис. 1.5.10 «Строение кожи» - потовые и сальные железы
Соединительные ткани
Рыхлая соединительная Клеточный состав характеризуется большим разнообразием: фибробласты , фиброциты , макрофаги , лимфоциты , единичные адипоциты и др. Большое количество; состоит из аморфного вещества и волокон (эластин, коллаген и др.) Присутствует во всех органах, включая мышцы, окружает кровеносные и лимфатические сосуды, нервы; основная составляющая дермы . Механические (оболочка сосуда, нерва, органа); участие в обмене веществ (трофика ), выработке иммунных тел, процессах регенерации . Рис.1.5.1 , вид Б
Плотная соединительная Волокна преобладают над аморфным веществом. Каркас внутренних органов, твердая мозговая оболочка, надкостница, сухожилия и связки. Механическая, формообразующая, опорная, защитная. Рис.1.5.1 , вид В
Жировая Почти всю цитоплазму адипоцитов занимает жировая вакуоль. Межклеточного вещества больше, чем клеток. Подкожная жировая клетчатка, околопочечная клетчатка, сальники брюшной полости и т.д. Депонирование жиров; энергетическое обеспечение за счет расщепления жиров; механическая. Рис.1.5.1 , вид Г
Хрящевая Хондроциты , хондробласты (от лат. chondron - хрящ) Отличается упругостью, в т. ч. за счет химического состава. Хрящи носа, ушей, гортани; суставные поверхности костей; передние отделы ребер; бронхи, трахея и др. Опорная, защитная, механическая. Участвует в минеральном обмене («отложение солей»). В костях содержится кальций и фосфор (почти 98% от общего количества кальция!). Рис.1.5.1 , вид Д
Костная Остеобласты , остеоциты , остеокласты (от лат. os - кость) Прочность обусловлена минеральным «пропитыванием». Кости скелета; слуховые косточки в барабанной полости (молоточек, наковальня и стремечко) Рис.1.5.1 , вид Е
Кровь Эритроциты (включая юные формы), лейкоциты , лимфоциты , тромбоциты и др. Плазма на 90-93% состоит из воды, 7-10% - белки, соли, глюкоза и др. Внутреннее содержимое полостей сердца и сосудов. При нарушении их целостности - кровотечения и кровоизлияния. Газообмен, участие в гуморальной регуляции, обмене веществ, терморегуляции, иммунной защите; свертывание как защитная реакция. Рис.1.5.1 , вид Ж; рис.1.5.2
Лимфа В основном лимфоциты Плазма (лимфоплазма) Внутреннее содержимое лимфатической системы Участие в иммунной защите, обмене веществ и др. Рис. 1.3.4 "Формы клеток"
МЫШЕЧНЫЕ ТКАНИ
Гладкомышечная ткань Упорядоченно расположенные миоциты веретенообразной формы Межклеточного вещества мало; содержит кровеносные и лимфатические сосуды, нервные волокна и окончания. В стенках полых органов (сосудов, желудка, кишечника, мочевого и желчного пузыря и др.) Перистальтика желудочно-кишечного тракта, сокращение мочевого пузыря, поддержание артериального давления за счет тонуса сосудов и т. д. Рис.1.5.1 , вид З
Поперечно-полосатая Мышечные волокна могут содержать свыше 100 ядер! Скелетная мускулатура; сердечная мышечная ткань обладает автоматизмом (глава 2.6) Насосная функция сердца; произвольная мышечная активность; участие в теплорегуляции функций органов и систем. Рис.1.5.1 (вид И)
НЕРВНАЯ ТКАНЬ
Нервная Нейроны ; клетки нейроглии выполняют вспомогательные функции Нейроглия богата липидами (жирами) Головной и спинной мозг, ганглии (нервные узлы), нервы (нервные пучки, сплетения и т.д.) Восприятие раздражения, выработка и проведение импульса, возбудимость; регуляция функций органов и систем. Рис.1.5.1 , вид К

Сохранение формы и выполнение специфических функций тканью генетически запрограммировано: дочерним клеткам посредством ДНК передается способность к выполнению специфических функций и к дифференцированию. О регуляции экспрессии генов, как основе дифференцировки, было сказано в разделе 1.3.4 .

Дифференцировка - это биохимический процесс, при котором относительно однородные клетки, возникшие из общей клетки-предшественницы, превращаются во все более специализированные, специфические типы клеток, формирующие ткани или органы. Большинство дифференцированных клеток обычно сохраняет свои специфические признаки даже в новом окружении.

В 1952 году ученые из Чикагского университета осуществили разделение клеток куриного эмбриона, выращивая (инкубируя) их в растворе фермента при осторожном помешивании. Однако клетки не оставались разделенными, а начинали объединяться в новые колонии. Более того, при смешивании печеночных клеток с клетками сетчатки глаза образование клеточных агрегатов происходило так, что клетки сетчатки всегда перемещались во внутреннюю часть клеточной массы.

Взаимодействия клеток . Что же позволяет тканям не рассыпаться при малейшем внешнем воздействии? И чем обеспечивается слаженная работа клеток и выполнение ими специфических функций?

Множество наблюдений доказывает наличие способности у клеток распознавать друг друга и соответствующим образом реагировать. Взаимодействие - это не только способность передавать сигналы от одной клетки к другой, но и способность действовать совместно, то есть синхронно. На поверхности каждой клетки располагаются рецепторы (смотри раздел 1.3.2), благодаря которым каждая клетка распознает другую себе подобную. И функционируют эти “детекторные устройства” согласно правилу “ключ - замок” - этот механизм неоднократно упоминается в книге.

Давайте немного поговорим о том, как клетки взаимодействуют друг с другом. Известно два основных способа межклеточного взаимодействия: диффузионное и адгезивное . Диффузионное - это взаимодействие на основе межклеточных каналов, пор в мембранах соседних клеток, расположенных строго напротив друг друга. Адгезивное (от латинского adhaesio - прилипание, слипание) - механическое соединение клеток, длительное и стабильное удерживание их на близком расстоянии друг от друга. В главе, посвященной строению клетки, описаны различные виды межклеточных соединений (десмосомы, синапсы и другие). Это является основой для организации клеток в различные многоклеточные структуры (ткани, органы).

Каждая клетка ткани не только соединяется с соседними клетками, но и взаимодействует с межклеточным веществом, получая с его помощью питательные вещества, сигнальные молекулы (гормоны, медиаторы) и так далее. Посредством химических веществ, доставляемых ко всем тканям и органам тела, осуществляется гуморальный тип регуляции (от латинского humor - жидкость).

Другой путь регуляции, как уже упоминалось выше, осуществляется с помощью нервной системы. Нервные импульсы всегда достигают цели в сотни или тысячи раз быстрее доставки к органам или тканям химических веществ. Нервный и гуморальный способы регуляции функций органов и систем тесно между собой взаимосвязаны. Однако само образование большинства химических веществ и выделение их в кровь находятся под постоянным контролем нервной системы.

Клетка, ткань - это первые уровни организации живых организмов , но и на этих этапах можно выделить общие механизмы регуляции, обеспечивающие жизнедеятельность органов, систем органов и организма в целом.