Характеристики цинкового слоя нанесенного электродуговой металлизацией. Технология электродуговой металлизации. Назначение комплекта оборудования

Электродуговая металлизация представляет собой процедуру послойного нанесения на нагретые изделия металла малой толщины. Высота электродуги при этом минимальна, а расплавленная проволока рассеивается газовым потоком, направленным вдоль оси присадочного материала. Технология разработана еще в 50-х годах XX века и широко используется для предохранения конструкций различного назначения от коррозии.

Для выполнения металлизации применяется косвенная электродуга, горящая между токопроводящими проволочными элементами. Металл электрода, нагретый до капельного состояния, распыляется на обрабатываемое изделие струей защитного газа либо сжатого воздуха. По мере расплавления присадки одновременно поступают в область дуги двумя парами роликов.

Антикоррозионная защита способом металлизации характеризуется:

  • малыми энергозатратами;
  • высокой производительностью и эффективностью расхода распыляемой присадки;
  • возможностью создания покрытия толщиной до 15 мм без ограничения по размерам деталей;
  • небольшое температурное воздействие на основной материал обрабатываемых изделий;
  • надежность, простота обслуживания оборудования;
  • возможность полной или частичной автоматизации процесса, создания поточных линий.

Металлизация при помощи электродуги имеет и недостатки:

  • ограниченность ассортимента присадочного материала;
  • содержание в покрытии большого количества оксидов, снижающих ударную прочность;
  • недостаточно высокую прочность сцепления с основным материалом;
  • высокую пористость слоев, препятствующую постоянной эксплуатации изделий в подверженных коррозии средах без дополнительной защиты.

Технология процесса обработки металла

Поступление расплавляемых присадочных проволок сечением 1,5–2 мм производится сквозь отверстия в горелке. Между присадочными стержнями возбуждается электродуга, являющаяся причиной их расплавления.

Из сопла, расположенного посередине прибора для металлизации, выходит сжатый воздух, подхватывающий мелкие расплавленные капли металла и переносящий их на обрабатываемую поверхность.

Для распыления и переноса расплава обычно используется сжатый воздух. Если в качестве присадочного материала для электродугового покрытия используется нержавеющая сталь либо алюминиевые сплавы, то применяется азот.

Интенсивность поступления разжиженной присадки при электродуговой металлизации подбирается в соответствии с требуемым режимом дуги, влияющим на расстояние между проволочными элементами.

Электродуговые металлизаторы имеют следующие стандартные режимы работы:

  • напряжение – 24–35 В;
  • сила тока – 75–200 А;
  • давление подаваемого воздуха – 0,5 МПа;
  • выработка аппаратов – 30–300 г/мин.

Процесс электродуговой металлизации стабилен при постоянном токе, позволяет создавать напыления с тонкозернистой структурой.

На рисунке указаны основные элементы металлизатора:

  • 1 – дюзы;
  • 2 – точка проведения присадочного материала;
  • 3 – точка выхода сжатого воздуха.

Подлежащая металлизации поверхность предварительно очищается от масел, загрязнений, очагов коррозии. Подготовку крупных изделий выполняют с применением песко- или дробеструйной очистки после предварительного обезжиривания.

Для повышения сцепления временной период между окончанием подготовительных работ и выполнением электродугового покрытия должен составлять не более 120 минут.

Для минимизации температурных напряжений и недопущения перегрева изделий послойная металлизация осуществляется с перерывами для остывания и формирования покрытия.

Металл сначала наносится на участки изделия в местах резких переходов, галтелей, углов, выступов или уступов. Затем выполняется металлизация основных площадей при условии равномерного нанесения присадки за один либо несколько проходов.

Необходимый вид, размеры и формы изделия получают после электродугового распыления при завершающей обработке.

Присадочные материалы

В качестве присадочного материала преимущественно применяется проволочный стержень непрерывной длины. Присадки поставляются двух видов:

  • сплошного сечения;
  • порошковые.

Интенсивность поступления назначается 220–850 м/ч.

Для создания защитного слоя металлических элементов с последующей их посадкой либо при неподвижном соединении применяется сплошная проволочная нить. Для создания поверхностей повышенной твердости при электродуговой металлизации должны использоваться стержни порошковые.

Для формирования антикоррозийных слоев используются высоколегированные присадочные материалы на основе железа, проволоки из цветных металлов.

Для нанесения методом электродуговой металлизации чаще всего используются алюминий, цинк и соединения на их основе.

Присадка от катушек поступает через два гибких шланга к металлизатору. Кассеты и пульт располагаются на тумбе 3 и могут разворачиваться по вертикальной оси.

Электродуговой аппарат для металлизации ЭДМ-3 обладает малой массой (1,8 кг), а возможность разворота кассеты и управляющего блока по горизонтали делают его удобным для применения.

Электродуговой аппарат иной конструкции ЭМ-6 подлежит установке на суппорт токарного станка, на вал которого устанавливается напыляемая деталь. Между металлизатором и изделием крепится стальная воронка. На ее поверхность наносится порошкообразный графит, жидкое калиевое либо натриевое стекло. Благодаря такому решению эффективность применения присадочного материала повышается на 10–15%.

Распыляющая система электродугового аппарата модернизирована благодаря установке конусовидной воздушной дюзы. Это позволяет сократить угол раскрывания конуса, увеличить энергию распылительного потока и наносить слои под давлением 0,45–0,5 МПа.

Конструктивные элементы электродугового прибора для металлизации ЭМ-6:

  1. Металлизатор.
  2. Конусообразная дюза.
  3. Подлежащее обработке изделие.
  4. Патрон.
  5. Устройство, используемое для перемещения суппорта станка вместе с электродуговым металлизатором в продольном направлении.

Электродуговая металлизация – процесс нанесения покрытия, при котором для нагрева/расплава проволочного материала используется электричество. Постоянный ток различной полярности подается на две расходные проволоки, благодаря чему зажигается дуга, происходит расплавление проволок и отделяемые частицы материалы потоком сжатого воздуха переносятся на поверхность напыления.
Использование постоянного тока позволяет стабилизировать дуговой разряд и тщательно контролировать параметры напыления.

Рис. 1. Электродуговая металлизация

Особенности
Электродуговая металлизация характеризуется отличной, по сравнению с другими технологиями, производительностью, высоким КПД. Помимо этого, оборудования для электродуговой металлизации отличается простотой использования, неприхотливостью использования, невысокими требования к инфраструктуре подключения, что позволяет ее использовать как в условиях цеха со стационарными линиями электричества и сжатого воздуха, так и в условиях вне цеха, где достаточно дополнительно использовать широко распространенные промышленные компрессора и электрогенераторы.
Материалы для электродуговой металлизации производятся в виде проволок, в том числе и порошковых.
Электродуговая металлизация предполагает использование электрической энергии для расплавления материала. Отсутствие открытого пламени и горения, как такого, позволяют применять электродуговую металлизацию в закрытых пространствах. Широко известно применение электродуговой металлизации для напыления внутренних поверхностей цистерн хранения и перевозки пищевых и нефтепродуктов, балластных танков; допускается применение металлизации и внутри вентилируемых шахт и т.д.
Спектр используемых материалов ограничивается обязательным наличием в подаваемом материале проводящих элементов. Электродуговая металлизация не применима для нанесения полимерных, керамических и других непроводящих материалов.

Применение
Наиболее распространенным использованием электродуговой металлизации является нанесение легкоплавких материалов (Zn, Al, их сплавы). Системы покрытий на основе цинка, алюминия, сплавов на их основе а также добавления магния титана и других элементов характеризуются низким электрохимическим потенциалом, что позволяет использовать их в целях защиты от коррозии конструкционных сталей.
Такие покрытия предотвращают коррозию не только тем, что изолируют стальные поверхности от коррозионного воздействия окружающей среды как лакокрасочные материалы. Отрицательный, по отношению к стали электродный потенциал гальванически защищает поверхность от коррозии даже в случае локальных повреждений покрытия. Кроме того, при применении таких покрытий в принципе невозможно развитие подпленочной коррозии, что очень часто происходит при использовании лакокрасочных материалов.
Еще одно существенное преимущество металлизационных покрытий заключается в высокой адгезии металлических покрытий. Причем с течением времени адгезия только возрастает за счет взаимной диффузии металлов, тогда как любое лакокрасочное покрытие рано или поздно теряет адгезию и отслаивается ввиду принципиальной разнородности материалов.


Рис.2
. Нанесение антикоррозионного покрытия на зону переменной смачиваемости морской платформы.

Помимо антикоррозионных покрытий, электродуговая металлизация может применяться для нанесения износостойких покрытий.
Использование специально разработанных порошковых проволок подразумевает трехстадийный процесс образования покрытия: сначала от энергии металлизатора расплавляется оболочка порошковой проволоки, плавление представляет собой эндотермическую реакцию; выделяющееся при плавлении оболочки тепло проплавляет шихтовую смесь, наполняющую шнуровой материал.
Электродуговая металлизация, в отличие от широко применимого для нанесения износостойких покрытий высокоскоростного напыления, обладает большей производительностью и мобильность, что делает ее отличной альтернативой для создания износостойких покрытий, при этом нанесение покрытий ЭДМ значительно дешевле, однако отличительной особенностью от HVOF-покрытий является высокая пористость, что может в некоторых случаях привести к коррозии, а также меньший уровень адгезии.

Ее сущность заключается в плавлении металлических проволок электрической дугой, зажженной между ними, продувании через электрическую дугу струи сжатого газа, сдувании расплавленного металла и переносе его в виде частиц (капель) на восстанавливаемую поверхность.

Принципиальная схема дуговой металлизации показана на рис. 2.38. Через два канала в горелке непрерывно подают две проволоки (диаметром 1,5-3,2 мм), между концами которых возбуждается дуга и происходит их расплавление. Расплавленный металл подхватывается струей сжатого воздуха, истекающего из центрального сопла электрометаллизатора, и в мелкорасплавленном виде переносится на поверхность основного материала. Распыление и транспортирование расплавляемого металла осуществляются обычно сжатым воздухом, за исключением случая напыления коррозионностойкой сталью 308 и алюминиевыми сплавами, когда используют азот. При дуговом напылении на постоянном токе процесс протекает стабильно, обеспечивая получение слоя покрытия с мелкозернистой структурой при высокой производительности. Поэтому в настоящее время для дугового напыления применяют источники постоянного электрического тока со стабилизатором напряжения или источники со слабовозрастающей характеристикой.

Рис. 2.38.

7 - насадок; 2 - место ввода напыляемого материала (проволоки); 3 - место

подачи сжатого воздуха

Температура дуги зависит от вида транспортирующего газа, состава электродной проволоки, режимов напыления и других параметров. При использовании металлических электродов и силе тока дуги 280 А достигается температура 5800 ± 200°С. Во время дуговой металлизации, протекающей при такой температуре, легче образуются капли напыляемого материала.

При дуговой металлизации за счет применения мощных электро- металлизационных установок значительно выше производительность процесса и меньше затраты времени, чем при газопламенном напылении. Например, при силе тока 750 А можно напылять стальное покрытие с производительностью 36 кг/ч, а при силе тока 500 А - цинковое покрытие с производительностью 1,2 кг/мин, что в несколько раз превышает производительность газопламенного напыления.

Электрометаллизация обеспечивает более прочные покрытия, которые лучше соединяются с основой, чем при газопламенном напылении. При использовании в качестве электродов проволок из двух различных металлов можно получить покрытие из их сплава (такого рода сплавы называют псевдосплавами), правда, при этом желательно применять такие электрометаллизаторы, которые позволяют отдельно регулировать скорости подачи каждого электрода.

Эксплуатационные расходы при электрометаллизации невелики. Кроме того, гибкость и универсальность этой технологии позволяют получать более однородный слой толщиной от нескольких микрометров до 10 мм.

Однако при дуговом напылении возможно напыление только электропроводных материалов, возникает опасность перегрева и окисления напыляемого материала при малых скоростях подачи распыляемой проволоки; из-за выделения при горении дуги большого количества теплоты происходит значительное выгорание легирующих элементов, входящих в напыляемый сплав (например, содержание углерода в материале покрытия снижается на 40-60%, а кремния и марганца - на 10-15%).

Данный метод применяется для восстановления таких деталей, как коленчатые валы двигателей КамАЗ и другой автотракторной техники; тормозные барабаны, тормозные диски, диски сцеплений, тормозные шкивы; алюминиевые головки блока цилиндров (плоскость разъема); шатуны двигателей (нижняя головка); гильзы цилиндров (внутренняя и наружная поверхности); валы роторов, стартеров, электродвигателей, шкворней, гидроштоков, блоки цилиндров любых типоразмеров (опоры коренных подшипников).

Технологический процесс электродугового напыления покрытий включает в себя несколько операций. Изношенные поверхности детали после предварительной механической обработки подвергаются струйно-абразивной обработке с целью устранения дефектов, образовавшихся в процессе эксплуатации, придания правильной формы и ликвидации отклонений от соосности, получения необходимой шероховатости, удаления оксидной пленки и создания развитой поверхности. Удаление оксидной пленки активирует напыляемую поверхность, что обеспечивает образование химических связей между этой поверхностью и напыляемыми частицами.

На технологию дробеструйной обработки оказывают влияние вид абразивного материала, его форма и размеры. В качестве абразивного материала используют электрокорунд марок 13А, 14А зернистостью 60-80 (50% по массе) и зернистостью 120-160 (ГОСТ 3647-80) или дробь марки ДСК (ДЧК) зернистостью 0,8-1,5 (ГОСТ 11964- 81). Режимы обработки: давление воздуха 0,5-0,6 МПа; угол наклона абразивной струи к поверхности детали 60-90°; дистанция обработки 100-150 мм; расход воздуха 3-4 м 3 /мин.

Поверхности деталей, не подлежащие напылению, закрывают защитными масками или покрывают изолирующими составами типа «Протектор-1», «Протектор-2»; в отверстия вставляют пробки из термостойкой резины.

Подлежащие напылению поверхности очищают от оставшихся мелких частиц абразива и обезжиривают органическими растворителями и моющими средствами. Подготовленная поверхность должна быть матовой и не иметь блестящих участков. Чугунные детали подвергают не только обезжириванию, но и обжигу при температуре 260-530°С для выгорания масла, содержащегося в порах.

При этом операцию напыления проводят сразу после подготовки поверхности детали. После напыления покрытий на детали производится их обработка шлифованием или резанием и ППД с нагревом (термопластическим деформированием) до номинальных размеров. После обкатки контролируются размеры и твердость обработанной поверхности.

Питание дуги может осуществляться переменным или постоянным током. При использовании постоянного тока дуга горит непрерывно и устойчиво, поэтому по сравнению с переменным током процесс плавления более стабильный, обеспечивается высокая дисперсность частиц наносимого металла и плотность создаваемых ими покрытий.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Электродуговая металлизация

Сущность процесса заключается в том, что напыляемый металл расплавляется электрической дугой, распыляется на частицы 10—100 мкм и переносится на восстанавливаемую поверхность струей газа.

Рис. 4.49. Схема электродуговой металлизации: 1 — напыляемая поверхность; 2 — направляющие наконечники; 3 — воздушное сопло; 4 — подающие ролики; 5 — проволока; 6 — газ.

Электрическая дуга возбуждается между двумя электродными проволоками 5, которые изолированы одна от другой и равномерно подаются роликовыми механизмами 4 со скоростью 0,6—1,5 м/мин через направляющие наконечники 2. Если проволоки изготовлены из разных материалов, то материал покрытия представляет собой их сплав. Расстояние от сопла до детали составляет 80—100 мм.

Одновременно по воздушному соплу 3 в зону дуги поступает сжатый воздух или инертный газ под давлением 0,4—0,6 МПа, который распыляет расплавленный металл и переносит его на поверхность детали 1. Большая скорость движения частиц металла (120—300 м/с) и незначительное время полета, исчисляемое тысячными долями секунды, обуславливают в момент удара о деталь их пластическую деформацию, заполнение частицами пор поверхности детали, сцепление частиц между собой и с деталью, в результате чего на ней образуется сплошное покрытие. Последовательным наслаиванием частиц металла можно получить покрытие толщиной более 10 мм (обычно 1,0—1,5 мм для тугоплавких и 2,5—3,0 мм для легкоплавких материалов).

Питание дуги может осуществляться переменным или постоянным током. При использовании постоянного тока дуга горит непрерывно и устойчиво, поэтому по сравнению с переменным током процесс плавления более стабильный, обеспечивается высокая дисперсность частиц наносимого металла и плотность создаваемых ими покрытий.

Для электродугового напыления применяют электрические металлизаторы: станочные ЭМ-6, МЭС-1, ЭМ-12, ЭМ-15 (при значительном объеме восстановительных работ), которые монтируются обычно на токарных станках или специальном оборудовании, или ручные (переносные) ЭМ-3, РЭМ-ЗА, ЭМ-9, ЭМ-10 (при небольшом объеме работ).

Присадочным материалом при металлизации в зависимости от назначения покрытия обычно служит электродная проволока (стальная, медная, латунная, бронзовая, алюминиевая и др.) (табл. 4.8) диаметром 1—2 мм. Для получения антифрикционных покрытий применяют биметаллическую свинцово-алюминиевую проволоку с массовым соотношением этих металлов 1:1.

Проволока должна быть гладкой, чистой и мягкой. Жесткую стальную проволоку отжигают при температуре 800—850 °С с последующим медленным охлаждением вместе с печью. Для уменьшения жесткости проволоки из меди и ее сплавов необходим нагрев до 550—600 °С с последующим охлаждением в воде.

Основные преимущества электродуговой металлизации — высокая по сравнению с другими методами производительность (до 50 кг напыляемого материала в час) и несложное технологическое оборудование.

К ее недостаткам относятся значительное (до 20 %) выгорание легирующих элементов и повышенное окисление металла. Для устранения этих недостатков в обоснованных случаях для распыления расплавленного металла вместо сжатого воздуха применяют природный газ или продукты сгорания углеводородного топлива, исключающие взаимодействие частиц металла с воздухом (активированный способ металлизации). При этом благодаря науглероживанию и закалке частиц металла повышается твердость напыленного слоя.

Таблица 4.8

Материал электродной проволоки для различных покрытий

Высокочастотная металлизация

Этот метод основан на расплавлении присадочного материала за счет индукционного нагрева током высокой частоты (200—300 кГц) и распылении расплавленного металла струей сжатого воздуха. В качестве присадочного материала используются проволока и стержни из углеродистой стали диаметром 3—6 мм. Покрытия наносятся высокочастотными металлизаторами МВЧ-1, МВЧ-2 и др.

Присадочный материал 6 расплавляется в индукторе 4 металлизатора, который подключен к генератору тока высокой частоты. Присадочный материал непрерывно подается роликами 7 через направляющую втулку 8 и благодаря наличию концентратора 3 плавится на небольшой длине. Сжатый воздух, поступающий из канала 5 в зону плавления, распыляет расплавленный материал и переносит его частицы в виде газометаллической струи 2 на напыляемую поверхность 1.

Рис. 4.50. Схема напыления высокочастотным методом: 1 — напыляемая поверх" ность; 2 — газометаллическая струя; 3 — концентратор тока; 4 — индуктор; 5 — воз душный канал; б— проволока; 7 — подающие ролики; 8 — направляющая втулка

По сравнению с электродуговой при высокочастотной металлизации снижаются выгорание легирующих элементов и пористость покрытия, а также повышается производительность процесса.

Покрытия, нанесенные высокочастотной металлизацией, за счет благоприятных условий плавления присадочного материала имеют лучшие структуру и физико-механические свойства, чем при других методах, кроме плазменной металлизации. Эти преимущества обусловлены, в частности, тем, что выгорание основных химических элементов снижается в 4—6 раз, насыщенность покрытия окислами уменьшается в 2—3 раза, а это увеличивает прочность сцепления и уменьшает расход присадочного материала. Недостаток данного метода металлизации — необходимость в более сложном технологическом оборудовании.

Плазменная металлизация

Это прогрессивный способ нанесения покрытий, при котором расплавление и перенос материала на восстанавливаемую поверхность осуществляется струей плазмы. Плазма — это сильно ионизированное состояние газа, когда концентрация электронов и отрицательных ионов равна концентрации положительно заряженных ионов. Плазменную струю получают, пропуская плазмообразующий газ через электрическую дугу при ее питании от источника постоянного тока напряжением 80—100 В.

Переход газа в ионизированное состояние и распад его на атомы сопровождается поглощением значительного количества энергии, которая выделяется при охлаждении плазмы в результате ее взаимодействия с окружаемой средой и напыляемой деталью. Это обуславливает высокую температуру плазменной струи, которая зависит от силы тока, вида и расхода газа. В качестве плазмообразующего газа обычно применяют аргон или азот и реже водород или гелий. При использовании аргона температура плазмы составляет 15000-30000°С, а азота — 10 000-15 000 °С. При выборе газа следует учитывать, что азот дешевле и менее дефицитен, чем аргон, но чтобы зажечь в нем электрическую дугу, требуется значительно большее напряжение, что обуславливает повышенные требования к электробезопасности. Поэтому иногда при зажигании дуги используют аргон, для которого напряжение возбуждения и горения дуги меньше, а в процессе напыления — азот.

Покрытие формируется за счет того, что поступающий в струю плазмы наносимый материал расплавляется и переносятся потоком горячего газа на поверхность детали. Скорость полета частиц металла составляет 150—200 м/с при расстоянии от сопла до поверхности детали 50—80 мм. Благодаря более высокой температуре наносимого материала и большей скорости полета, прочность соединения плазменного покрытия с деталью выше, чем при других способах металлизации.

Высокая температура и большая мощность по сравнению с другими источниками тепла является основным отличием и преимуществом плазменной металлизации, обеспечивающим значительное повышение производительности процесса, возможность расплавлять и наносить любые жаростойкие и износостойкие материалы, включая твердые сплавы и композиционные материалы, а также оксиды, бориды, нитриды и др., в различных сочетаниях. Благодаря этому можно формировать многослойные покрытия с различными свойствами (износостойкие, хорошо прирабатывающиеся, жаростойкие и др.). Наиболее качественные покрытия получаются при применении самофлюсующихся наплавочных материалов.

Плотность, структура и физико-механические свойства плазменных покрытий зависят от наносимого материала, дисперсности, температуры и скорости столкновения переносимых частиц с восстанавливаемой деталью. Последние два параметра обеспечиваются за счет управления плазменной струей. Свойства плазменных покрытий существенно повышаются при последующем их оплавлении. Такие покрытия эффективны при ударных и высоких контактных нагрузках.

Принцип работы и устройство плазмотрона иллюстрирует рис. 4.51. Плазменную струю получают, пропуская плазмообразующий газ 7 через электрическую дугу, создаваемую между вольфрамовым катодом 2 и медным анодом 4 при подключении к ним источника тока.

Катод и анод разделены между собой изолятором 3 и непрерывно охлаждаются жидкостью б (желательно дистиллированной водой). Анод выполнен в виде сопла, конструкция которого обеспечивает обжатие и определенное направление плазменной струи. Обжатию способствует также электромагнитное поле, возникающее вокруг струи. Поэтому ионизированный плазмообразующий газ выходит из сопла плазмотрона в виде струи небольшого сечения, что обеспечивает высокую концентрацию тепловой энергии.

Рис. 4.51. Схема процесса плазменного напыления: 1 — порошковый дозатор; 2— катод; 3 — изоляционная прокладка; 4 — анод; 5 — транспортирующий газ; 6 — охлаждающая жидкость; 7 — плазмообразующий газ

Наносимые материалы используются в виде гранулированных порошков с размером частиц 50—200 мкм, шнуров или проволоки. Порошок может подаваться в плазменную струю вместе с плазмообразующим газом или из дозатора 1 транспортирующим газом 5 (азотом) в сопло газовой горелки, а проволоку или шнур вводят в плазменную струю ниже сопла плазменной горелки. Перед использованием порошок следует просушить и прокалить для уменьшения пористости и повышения сцепляемости покрытия с деталью.

Защита плазменной струи и находящихся в ней расплавленных частиц металла от взаимодействия с воздухом может осуществляться потоком инертного газа, который должен охватывать плазменную струю. Для этого в плазмотроне концентрично основному предусматривается дополнительное сопло, через которое подается инертный газ. Благодаря ему исключается окисление, азотирование и обезуглероживание напыляемого материала.

В рассмотренном примере источник питания подключен к электродам плазмотрона (закрытая схема подключения), поэтому электрическая дуга служит только для создания плазменной струи. При применении наносимого материала в виде проволоки источник питания может быть подключен также и к ней. В этом случае кроме плазменной струи образуется плазменная дуга, которая также участвует в расплавлении прутка, благодаря чему мощность плазмотрона существенно возрастает

Современные плазменные наплавочные установки имеют электронные системы регулирования параметров процесса, оснащаются манипуляторами и роботами. Это повышает производительность и качество процесса напыления, улучшает условия работы обслуживающего персонала.

Газопламенная металлизация

Газопламенный метод нанесения покрытий заключается в расплавлении наносимого материала высокотемпературным пламенем, распылении и переносе частиц металла на предварительно подготовленную поверхность детали струей сжатого воздуха или инертного газа. Температура пламени горючих газов в смеси с кислородом находится в пределах 2000—3200 °С. Для газопламенной металлизации применяют материалы в виде проволоки, порошков и шнуров. Шнуры состоят из порошкообразного наполнителя в оболочке из материала, который полностью выгорает в газовом пламени.

Расплавление металла производится восстановительным пламенем, что позволяет по сравнению с электродуговой металлизацией уменьшить выгорание легирующих элементов и обезуглероживание материала и тем самым повысить качество покрытия. Преимуществом газопламенной металлизации является также относительно небольшое окисление металла при его распылении на мелкие частицы, что обеспечивает более высокую плотность и прочность покрытия. Недостаток этого метода — невысокая производительность напыления (2—4 кг металла за час) и более высокая стоимость наплавочных материалов.

В зависимости от назначения детали, ее материала и условий эксплуатации при восстановлении используют различные методы газопламенной металлизации.

Газопламенное напыление из прутковых материалов . Присадочная проволока 3 расплавляется пламенем 7 смеси горючего газа (ацетилена или пропан-бутана) с кислородом, которые подаются в смесительную камеру 1 соответственно по каналам 5 и 2. По каналу 6 поступает сжатый воздух или инертный газ, который распыляет расплавленный металл в виде насыщенной частицами металла струи 8 и переносит их на напыляемую поверхность 9.

Горелки могут быть ручными и машинными. В проволочных горелках используется проволока диаметром от 1,5 до 5,0 мм.

Рис. 4.52. Схема металлизации проволочным материалом; 1 — смесительная камера; 2 — канал подвода кислорода; 3 — проволока; 4 — направляющая; 5 — канал подвода ацетилена; 6 — воздушный канал; 7 — пламя; 8 — струя газометаллическая; 9 — напыляемая поверхность

Газопламенное напыление порошковых материалов . Этот метод металлизации получил широкое применение благодаря тому, что использование порошковых материалов обеспечивает его дополнительные преимущества. К ним относятся:

— высокая гибкость процесса, что выражается в возможности нанесения покрытий на различные по габаритам изделия;

— отсутствие ограничений на сочетания материалов покрытия и детали, что позволяет восстанавливать детали более широкой номенклатуры и назначения;

— меньшее влияние процесса нанесения покрытия на свойства материала детали и др.

Газопламенному напылению подвергаются изношенные посадочные поверхности валов и корпусных деталей.

В зависимости от назначения и материала восстанавливаемой детали, условий ее эксплуатации, требований к покрытию и его дополнительной обработке применяют методы газопламенного нанесения покрытий : без оплавления и с оплавлением , которое может выполняться как в процессе напыления, так и после него.(см. табл.)

В зависимости от используемого метода напыления применяются соответствующие порошковые материалы (см. табл.).

Газопламенное напыление без последующего оплавления применяется для восстановления недеформированных деталей с износом до 2,0 мм и сохраненной структурой основного металла, которые в процессе эксплуатации не подвергаются ударам, знакопеременным нагрузкам и высокотемпературному нагреву. Предварительно деталь подогревают горелкой при избытке ацетилена, чтобы предотвратить окисление поверхности. Стальные детали подогревают до 50—100 °С, бронзовые и латунные — до 300 °С.

Напыление без оплавления осуществляется в два этапа: вначале наносится подслой (порошок ПТ-НА-01), а затем основной слой (порошок ПТ-19Н-01 или др.). Основной слой наносят за несколько проходов, при этом толщина покрытия должна быть не больше 2,0 мм на сторону. Фасонные и плоские детали напыляют вручную, а детали типа «вал» — вручную или на механизированных установках с автоматической подачей металлизатора.

Оплавление необходимо для металлизационных покрытий, работающих при ударных нагрузках, так как из-за невысокой прочности сцепления с основным металлом неоплавленные покрытия могут растрескиваться и отслаиваться. Покрытия, подлежащие оплавлению, должны содержать материалы, хорошо смачивающие поверхность детали и обладающие свойством самофлюсования, например порошковые сплавы на основе никеля.

Жидкая фаза, образующаяся при оплавлении покрытия, способствует интенсификации диффузионных процессов между ним и металлом детали. В результате повышаются прочность сцепления, ударная вязкость, износостойкость и плотность материала покрытия. Для оплавления применяют различные источники тепла (ацетиленокислородное пламя, плазменную дугу, токи высокой частоты, лазерный луч, печи с защитно-восстановительной атмосферой и др.). Температура оплавления не должна превышать 1100 °С. Технология оплавления должна исключать перегрев и отслаивание покрытия. После оплавления деталь охлаждают вместе с соответственно нагретой печью.

Напыление с последующим оплавлением применяется для восстановления деталей типа «вал» при толщине покрытия до 2,5 мм. Оплавление выполняется сразу же после напыления. Напыленный участок нагревают до расплавления покрытия, в результате чего оно приобретает блестящую поверхность. Твердость оплавленных покрытий зависит от марки порошка. Они устойчивы против коррозии, абразивного изнашивания, действия высокой температуры и могут применяться для деталей, работающих при знакопеременных и контактных нагрузках.

Схема газопорошкового напыления без оплавления приведена на рис. 4.53.

Рис. 4.53. Схема газопламенного напыления порошкового материала с помощью транспортирующего газа: 1 — смесь кислорода с горючим газом; 2 — транспортирующий газ; 3 — напыляемый порошок; 4 — сопло; 5 — факел; 6 — покрытие; 7 — подложка

Напыление с одновременным оплавлением (газопорошковая наплавка) используется для восстановления деталей с местным износом до 3—5 мм, работающих при знакопеременных и ударных нагрузках, изготовленных из чугуна, конструкционных, коррозионностойких сталей и др. материалов.

Основой установки для напыления порошковых покрытий с одновременным оплавлением является типовая сварочная горелка, дополненная устройством для подачи порошка в газовое пламя. Установки для напыления различаются степенью механизации (ручные и машинные), мощностью (очень малой, малой, средней и большой мощности), способом подачи порошка (инжекторный и безинжекторный).

Технологический процесс восстановления деталей с газопламенным нанесением покрытий в общем случае включает следующие операции:

— предварительный нагрев восстанавливаемой детали до 200—250 °С;

— нанесение подслоя, как основы для наложения основных слоев;

— нанесение основного слоя покрытия с необходимыми физико-механическими свойствами;

— механическая обработка нанесенного слоя и контроль покрытия.

При прочих равных условиях предварительный подогрев детали и нанесение подслоя влияют на прочность сцепления покрытия с основным металлом. Она зависит также от способа подготовки поверхности к напылению, использования терморегулирующих порошков, эффективной мощности пламени, способа и параметров процесса распыления, наличия в материале покрытия поверхностно активных добавок, применяемого оборудования и др. факторов.

Обработка напыленных покрытий твердостью до 40HRCэ осуществляется резанием твердосплавными инструментами и инструментами из сверхтвердых материалов. Токарную обработку рекомендуется выполнять в следующей последовательности: снятие фасок у краев покрытия; проточка нанесенного слоя от середины покрытия к концам детали до устранения неровностей нанесенного слоя или окончательная обработка восстановленной поверхности с требуемой точностью и шероховатостью.

Обработку напыленных поверхностей производят также шлифованием на соответствующих станках (круглошлифовальных, внутри шлифовальных, плоскошлифовальных). В этом случае обязательно применение охлаждающей жидкости, например, 2—3%-ного раствора кальцинированной соды. Шлифование проводится непосредственно после нанесения покрытий или после предварительной токарной обработки. Шлифование напыленных покрытий твердостью до 60HRCэ выполняется кругами из карбида кремния или белого электрокорунда, а при твердости более 60HRCэ — алмазными кругами.

Напыление покрытий методом детонации

Процесс металлизации при этом виде напыления осуществляется за счет энергии, выделяющейся при детонации— процессе химического превращения взрывчатого вещества, который происходит в очень тонком слое и распространяется по взрывчатому веществу в виде особого вида пламени со сверхзвуковой скоростью (в газовых смесях 1000—3500 м/с).

В установках для металлизации в качестве взрывчатого вещества используется смесь кислорода и ацетилена, детонация которой представляет разновидность горения газового топлива. Выделяющаяся при этом потенциальная энергия газовой смеси создает ударную волну и поддерживает в ней высокую температуру (свыше 5000 °С) и давление (несколько десятков ГПа). Источником детонации обычно является тепловое воздействие на газовую смесь (электрическая искра).

Поступающие в зону детонации порошковые материалы разогреваются до температуры свыше 3500 °С и перемещаются вместе с продуктами детонации с высокой скоростью, которая на выходе из ствола составляет 800—900 м/с. Таким образом, материал покрытия выбрасывается взрывной волной на обрабатываемую поверхность со сверхзвуковой скоростью.

На практике детонационные покрытия формируются за счет энергии периодически создаваемых взрывов смеси кислорода и ацетилена. Установка (пушка) для детонационного напыления (рис. 4.57) содержит: камеру сгорания, выполненную совместно с водоохлаждаемым стволом 5; запальное устройство (электрическая свеча) 2 с источником питания 3; устройство 1 подачи кислорода и ацетилена, порошковый дозатор 4.

Рис. 4.57. Схема установки для напыления методом детонации: 1 — устройство для подачи смеси газов; 2 — электрическая свеча; 3 — источник питания; 4 — порошковый дозатор; 5 — ствол; 6 — подложка; 7 — деталь; 8 — покрытие; 9 — порошок

Напыляемая деталь 6 устанавливается на расстоянии 70—150 мм от края ствола. В процессе нанесения покрытия последовательно происходят: подача кислорода и ацетилена в камеру сгорания; подача из дозатора в потоке азота определенного количества напыляемого порошка; воспламенение электрической искрой смеси кислорода и ацетилена; горение газовой смеси, выстрел порошка из ствола в направлении напыляемой поверхности. Подача порошка и газов в ствол пушки производится автоматически. Защита газовых клапанов от действия взрыва и очистка ствола от продуктов сгорания обеспечивается подачей в него азота.

Описанный цикл повторяется обычно с частотой 3—4 Гц, которая может быть повышена до 15 Гц и более. При каждом взрыве покрытие наносится на ограниченный участок поверхности, поэтому сплошное покрытие формируется за счет перемещения детали относительно пушки. Покрытие формируется из полностью расплавленных частиц порошка или из смеси расплавленных или нерасплавленных частиц. Высокая скорость в момент удара и высокая температура в зоне взаимодействия вызывают приваривание порошка на поверхности детали. Несмотря на высокую температуру продуктов детонации и частиц порошка, покрываемая деталь нагревается до температуры не более 200 °С.

В отличие от газопламенных и плазменных методов детонационные покрытия формируются при более высоких скоростях частиц и наличии более крупных непроплавленных частиц порошка. Первый слой покрытия практически не имеет пор (пористость менее 0,5 %), а образующиеся в нем отдельные поры уменьшаются в объеме или исчезают при формировании последующих слоев.

Детонационные покрытия обладают также высокой прочностью сцепления (до 20 ГПа) с основным металлом. Это обусловлено тем, что, несмотря на низкую общую температуру поверхностного слоя детали (200—250 °С), температура в отдельных точках контакта наносимого и основного металлов достигает температуры плавления стали. Поэтому происходит сплавление и перемешивание этих металлов с образованием прочного соединения.

Детонационными методами напыляют порошки чистых металлов — N i , Al, Mo, окислов, карбидов, нитридов и т.д. Толщина детонационных покрытий обычно составляет 40—220 мкм. Более тонкие покрытия имеют низкую износостойкость. Покрытие состоит из трех зон: переходная зона толщиной 5—30 мкм определяет прочность сцепления покрытия с подложкой; основная зона, толщина которой в зависимости от назначения покрытия составляет 30—150 мкм; поверхностная зона толщиной 10—40 мкм, которая обычно удаляется при обработке.

Технологический процесс детонационного нанесения покрытий включает подготовку напыляемой поверхности и порошка; нанесение и контроль качества покрытия; механическую обработку и контроль качества покрытий после механической обработки.

Для образования прочной связи между материалами детали и покрытия рекомендуется наносить промежуточный слой — подложку. Он необходим при слабой адгезии между покрытием и материалом детали, когда значения коэффициентов термического расширения материалов покрытия и детали существенно различаются, и если деталь работает в условиях переменных температур. Толщина промежуточного слоя составляет 0,05— 0,15 мм. Для его нанесения используются порошки нихрома, молибдена, никель-алюминиевых сплавов, стали 12Х18Н9 и др. Участки поверхности деталей, на которые покрытие не наносится, закрывают экранами из тонких листов металла.

Дистанцию напыления задают в зависимости от материала, размеров и форм детали, материала и необходимой толщины покрытия в пределах 50—200 мм. Необходимую толщину покрытий получают многократным повторением циклов напыления. Смещение детали между двумя циклами не должно превышать 0,5 диаметра отверстия в стволе.

Свойства газотермических покрытий

Взаимодействуя с кислородом воздуха, частицы металла окисляются. Образующаяся окисная пленка разделяет их и препятствует образованию прочных металлических связей частиц с основой и между собой. Из-за значительного количества оксидов и шлаковых включений покрытие имеет неоднородную, пористую структуру . Обычно плотность составляет 80—97 %. Покрытия из А l 2 O 3 и Zr0 2 имеют пористость 10—15 %. Покрытия из самофлюсующихся сплавов на основе никеля могут иметь пористость менее 2 %.

Металлическое покрытие получается достаточно хрупким, с низким пределом прочности на растяжение и низкой усталостной прочностью напыленного материала (сопротивление на разрыв для сталей в среднем составляет 10—12 МПа). Поэтому покрытие не увеличивает прочность детали, а ее усталостная прочность даже снижается, что связано, в частности, с образованием дополнительных концентраторов напряжений на поверхности детали при ее подготовке к металлизации. В этой связи не следует применять металлизацию для восстановления деталей с малым запасом прочности.

Покрытие характеризуется относительно слабой прочностью сцепления с основным металлом и частиц между собой, так как без применения специального дополнительного воздействия она определяется молекулярными силами взаимодействия контактирующих между собой участков и чисто механическим сцеплением напыляемых частиц с неровностями поверхности детали. Только в некоторых локальных точках отдельные частицы могут свариваться с металлом детали. Поэтому, например, прочность сцепления покрытия (МПа) при электрометаллизации составляет 10—25, при газопламенной — 12—28, при плазменной до 40. В этой связи металлизация не применяется для восстановления деталей, работающих при высоком напряжении на сдвиг (зубья шестерен, кулачки и др.), подвергающихся ударным нагрузкам, а также небольших по площади поверхностей, воспринимающих значительные нагрузки (резьба, канавки и т.д.).

К специальным методам повышения сцепления покрытия с основой относятся: предварительный подогрев детали до температуры 200—300 °С, нанесение промежуточного слоя (подслоя) из легкоплавких или трудноплавких материалов, оплавление покрытия.

Напыленные покрытия хорошо работают на сжатие . Например, временное сопротивление сжатию стального покрытия составляет 800—1200 МПа, что выше, чем у чугуна.

Твердость металлизированного слоя обычно выше твердости исходного металла из-за закалки наносимого материала в процессе металлизации, наклепа переносимых частиц металла при ударе о поверхность и наличия в сформированном слое окисных пленок.

Однако его износостойкость не связана с твердостью и при сухом трении может быть в 2—3 раза меньше, чем у металла детали, поэтому металлизированные покрытия нельзя применять в сопряжениях, работающих без смазки или с периодически подаваемой смазкой. Однако при наличии смазки металлизированные покрытия обеспечивают более низкий коэффициент трения в сопряжениях и большую износостойкость деталей. Это связано с тем, что благодаря пористости металлизированный слой впитывает масло до 9 % своего объема. Таким образом, наблюдается эффект самосмазывания покрытия. При недостаточной подаче смазки или при ее временном прекращении заедание наступает значительно позже по сравнению с неме-таллизированной поверхностью. Значительной износостойкостью обладают плазменные покрытия из тугоплавких материалов, что обусловлено их физико-механическими свойствами.

В условиях абразивного износа высокую стойкость имеют покрытия из самофлюсующихся сплавов на основе никеля и А l 2 O 3

В частности, износостойкость покрытий из самофлюсующихся сплавов на основе никеля (СНГН) в 3,5—4,6 раза выше износостойкости закаленной стали 45. Хорошие антифрикционные свойства для подшипников скольжения имеют покрытия из оловянно-свинцово-медных псевдосплавов.

Для создания коррозионно-стойких покрытий обычно используют алюминий, цинк, медь, хромо-никелевые и др. сплавы. Вследствие пористости покрытий их толщина не должна быть меньше 0,2 мм для цинка; 0,23 мм — для алюминия; 0,18 мм —для меди; 0,6—1,0 мм для нержавеющей стали.

Припекание порошковых покрытий

Припекание — это процесс получения металлического покрытия на поверхности детали, включающий нанесение на нее слоя порошка и нагрев их до температуры, обеспечивающей спекание порошкового материала и образование прочной диффузионной связи с деталью. В основу этого метода положены технологические приемы порошковой металлургии.

Для получения на поверхности детали прочного слоя, имеющего надежное сцепление с основой, необходимо активирование поверхности детали, порошка или обоих компонентов. Наиболее доступными и эффективными являются следующие виды активирования : химическое, термическое (ускоренный нагрев и введение присадок, снижающих температуру плавления в местах контакта порошка и детали), силовое (создание надежного контакта между порошком и деталью).

При химическом активировании в шихту вводятся активные присадки, обычно в виде дисперсного порошка (бора, кремния, фосфора, никеля и др.), равномерно распределенного в наносимом порошке. Они уменьшают окисление металла и разрушают окисные пленки.

Термическое активирование заключается в ускоренном нагреве с целью активизации диффузионных процессов и создания кратковременно в локальных зонах температуры, превышающей температуру плавления. При этом для снижения температуры появления жидкой фазы применяют присадки (как правило, совместно с химическим активированием), образующие легкоплавкую эвтектику. Наиболее эффективным и технологичным является нагрев в индукторе токами высокой частоты. Благодаря кратковременности нагрева до температуры, обеспечивающей припекание, уменьшается окисление порошка и детали, что исключает необходимость применения защитно-восстановительных сред или вакуума.

Силовое активирование необходимо в тех случаях, когда без надлежащего прилегания частиц порошка друг к другу и к поверхности детали невозможно создать условия, необходимые для припекания. Силовое активирование способствует повышению плотности покрытия и существенно ускоряет диффузионные процессы между частицами порошка и деталью. На практике для силового активирования применяют: статическое приложение нагрузки с одновременным нагревом, спекание с приложением вибраций, давление с использованием центробежных сил.

Одновременное применение химического, термического и силового активирования позволяет получать наиболее качественные покрытия.

Электроконтактное припекание . На практике обычно применяется метод электроконтактного припекания при силовом активировании. Процесс нанесения покрытия в этом случае осуществляется следующим образом. На поверхность детали подается порошок, который прижимается к ней электродом (обычно роликовым) контактной сварочной машины. Под действием импульсов электрического тока порошок нагревается до температуры 0,9— 0,95 температуры его плавления. Нагревание происходит за счет энергии, выделяемой при прохождении электрического тока через активное сопротивление, которое образуется контактами между частичками порошка, поверхностью детали и электрода.

Под действием давления со стороны электрода пластичные частички порошка деформируются, спекаются между собой и поверхностью детали. Покрытие образуется в результате бездиффузионного процесса схватывания и диффузионных процессов спекания и сваривания.

Процесс припекания обеспечивается при следующих параметрах: сила тока до 30 кА, напряжение 1—6 В, продолжительность импульса тока 0,01— 0,1 с, давление на порошок до 100 МПа.

Метод электроконтактного припекания, обладая высокой производительностью и низкой энергоемкостью, обеспечивает прочность сцепления нанесенного слоя порошка с деталью 150—200 МПа, создает в детали малую зону термического влияния, не требует применения защитной атмосферы, не сопровождается светоизлучением и газовыделением. Для придания покрытию необходимых показателей пористости, твердости и износостойкости применяют легированные порошки.

К недостаткам данного метода следует отнести нестабильность свойств покрытия по длине детали при традиционной (цилиндрической) форме электрода (ролика), что обусловлено неравномерным нагреванием порошка в пределах его ширины. Если под средней частью ролика, где оказываемое на порошок давление максимально, возможен его перегрев до расплавления, то под крайними участками температура нагрева может быть недостаточной для качественного припекания, что может быть причиной выкрашивания нанесенного слоя при эксплуатации.

Неравномерность нагрева порошка в этом случае обусловлена его сыпучестью, из-за которой плотность слоя порошка и, следовательно, его электрическое сопротивление по ширине ролика переменны. Для стабилизации нагрева порошка по ширине ролика, его наружную контактную поверхность выполняют вогнутой.

Все более широкое применение в промышленности получает разработанный в ИНДМАШе НАНБ способ припекания, при котором силовое активирование осуществляется центробежными силами, а порошок и деталь в процессе припекания разогревают индуктивным методом.

Существенным преимуществом данного способа припекания является то, что благодаря действию центробежных сил на каждую частицу порошка обеспечивается качественное формирование покрытия одновременно по всей длине поверхности детали. Кроме того, за счет совмещения во времени нагрева и формования покрытия, данный процесс припекания отличается высокой производительностью при минимальном окислении поверхности детали и порошка.

Индукционным центробежным припеканием наносят антифрикционные и износостойкие покрытия на внутренние, наружные и торцовые поверхности цилиндрических деталей в широком диапазоне диаметров. Для этого применяют специальные центробежные установки. Вращение детали обычно производят вокруг горизонтальной оси при наружном расположении индуктора, что позволяет получать равномерную толщину покрытия по длине детали и наносить покрытия в отверстиях небольшого диаметра.

По типовому технологическому процессу центробежного индукционного припекания в отверстии детали типа «втулка» ее помещают в защитную стальную оболочку, в отверстие засыпают смесь порошка и флюса, закрывают отверстие с обоих торцов детали антипригарными прокладками и крышками.

Собранное таким образом устройство закрепляют на шпинделе центробежной установки, обеспечив предварительно необходимое ее позиционирование относительно индуктора. Затем шпиндель приводят во вращение и включают цепь питания индуктора. Температуру нагрева детали контролируют соответствующей системой.

После спекания порошкового материала и припекания покрытия индуктор отключают, сохраняя вращение шпинделя. Вращение прекращают при охлаждении детали до 350—600 °С, после чего устройство снимают с установки и охлаждают его до естественной температуры. Полученное покрытие обрабатывают до требуемого размера.

В последние годы возросла потребность в электродуговой металлизации. Электродуговая металлизация (ЭДМ) имеет широкие возможности по сравнению со всеми известными методами нанесения металлопокрытий. С применением ЭДМ можно восстанавливать детали машин широкой номенклатуры в различных отраслях промышленности и сельского хозяйства, обеспечивать долговременную алюминием и цинком диффузионных агрегатов сахарных заводов, труб, резервуаров и других металлоконструкций, получать покрытия из псевдосплавов, например, из алюминия и стали, меди и стали, бронзы и стали, а также декоративные покрытия цветными металлами (медью, бронзой, латунью, алюминием).

Принципиальная схема дуговой металлизации показана на рис. Через два канала в горелке непрерывно подают две проволоки, между концами которых возбуждается дуга и происходит расплавление проволоки. Расплавленный металл подхватывается струей сжатого воздуха, истекающего из центрального сопла электрометаллизатора , и в мелкораспыленном виде переносится на поверхность основного материала. Распыление и транспортирование расплавляемого металла осуществляются обычно сжатым воздухом, хотя при напылении коррозионно-стойкой сталью 308 и алюминиевыми сплавами используют азот. При дуговом напылении на постоянном токе процесс протекает стабильно, обеспечивая получение слоя покрытия с мелкозернистой структурой при высокой производительности процесса. Поэтому в настоящее время для дугового напыления применяют источники постоянного электрического тока со стабилизатором напряжения или источники со слегка возрастающей характеристикой.

Дуговая металлизация обладает следующими преимуществами. Применение мощных электрометаллизационных установок (электродуговой металлизатор , ) позволяет значительно повысить производительность процесса и сократить затраты времени. Например, при силе тока 750 А можно напылять стальное покрытие с производительностью 36 кг/ч, а при силе тока 500 А - цинковое покрытие с производительностью 1,2 кг/мин, что в несколько раз превышает производительность газопламенного напыления.

К числу недостатков дугового напыления относится опасность перегрева и окисления напыляемого материала при малых скоростях подачи распыляемой проволоки. Кроме того, большое количество теплоты, выделяющейся при горении дуги, приводит к значительному выгоранию легирующих элементов, входящих в состав напыляемого материала (например, содержание углерода в материале покрытия снижается на 40-60 %, а кремния и марганца - на 10-15 %).

При нанесении слоя покрытия на поверхность детали ее нагрев до 50 - 70 °С не вызывает никаких структурных изменений в металле детали, т. е. его механические свойства сохраняются, благодаря чему можно наносить слой покрытия на любые материалы: металл, пластмассу, дерево, резину и т. п. Металлизация обеспечивает высокую твердость напыленного слоя, что способствует увеличению сроков службы восстанавливаемых деталей. На-пыляют самые разнообразные металлы. Например, для напыления может быть использована биметаллическая проволока из алюминия и свинца, что позволяет не только заменять дорогостоящие оловянистые баббиты и бронзы, но и значительно увеличить срок службы подшипников.

Однако, применяя металлизацию , необходимо учитывать, что металлизированный слой, нанесенный на поверхность детали, не повышает ее прочности. Поэтому применять металлизацию для восстановления деталей с ослабленным сечением не следует. При восстановлении деталей, находящихся под действием динамических нагрузок, а также деталей, работающих при трении без смазочных материалов, необходимо знать, что сцепляемость напыленного слоя с основным металлом детали недостаточна.

Получение качественных покрытий возможно лишь при строгом соблюдении режимов и тщательной подготовке поверхностей деталей, подвергающихся металлизации.

При подготовке поверхности деталей к металлизации отдельные операции выполняют в такой последовательности: очищают детали от загрязнений, пленок, окислов, жировых пятен, влаги и продуктов коррозии; выполняют предварительную обработку резанием поверхности для придания ей правильной геометрической формы; получают на поверхностях деталей шероховатость, необходимую для удержания нанесенного слоя металла; обе-спечивают защиту смежных поверхностей деталей, не подлежащих металлизации.

Поверхности деталей, подлежащих металлизации , очищают от загрязнений в моечных машинах, щетками, промывают в бензине или растворителях, нагревают в печах пламенем газовой горелки или паяльной лампы. Обработкой резанием исправляют геометрическую форму детали и доводят размеры детали до размеров, при которых возможно нанесение покрытий заданной толщины. На концах цилиндрических поверхностей оставляют буртики и протачивают замки в виде кольцевых канавок, предо-храняющие покрытие от разрушения.

Необходимую шероховатость на поверхности деталей, подлежащих металлизации, получают следующими способами. На поверхности термически необработанной круглой детали на токарно-винторезном станке нарезают «рваную» резьбу резцом, установленным с большим вылетом ниже оси детали на 3 - 6 мм. Вибрация резца приводит к появлению шероховатой поверхности с заусенцами. Резьбу нарезают при скорости резания 8 - 10 м/мин (без охлаждения) за один проход резца на глубину 0,6 - 0,8 мм. Шаг резьбы составляет 0,9 - 1,3 мм, а для вязких и мягких материалов - 1,1 -1,3 мм. На галтелях резьбу не нарезают. Для выхода резца при нарезании резьбы и устранения выкрашивания покрытия у торца детали делают кольцевые канавки, глубина которых должна быть на 0,2 - 0,3 мм больше глубины резьбы. В ряде случаев кольцевые канавки заменяют черновой обточкой с оставлением буртиков шириной 1 - 2 мм. В табл. 31 приведены некоторые режимы при нарезании рваной резьбы.

Часто нарезание резьбы заменяют более производительным процессом - накаткой резьбы . Прочность связи основного металла с покрытием при этом несколько ухудшается.

Производительность напыления электрическими аппаратами зависит от применяемого материала. Если режим напыления выбран правильно, то при толщине покрытия 0,5 - 0,7 мм поверхностный слой нагревают до 70 °С; при толщине покрытий 2 - 3 мм и более температура этого слоя достигает 100 - 150 °С. Нагрев может явиться причиной возникновения высоких напряжений. Для уменьшения нагрева детали покрытие наносят тонкими слоями отдельными участками. Так, при напылении шеек валов диаметром 150 мм и значи-тельной длине этих шеек за один проход напыляют поверхность площадью не более 800 - 1000 мм 2 .

Твердость покрытия можно регулировать подбором исходного материала или режима охлаждения в процессе нанесения покрытия.

Как указывалось ранее, технологический процесс нанесения покрытия изменяется в зависимости от формы детали. На детали с плоскими поверхностями покрытия наносят чаще всего вручную. В отдельных случаях для нанесения распыленного материала используют металлорежущие станки. При напылении покрытий плоских деталей возникает ряд трудностей, которые являются прежде всего результатом появления остаточных растягивающих напряжений, стремящихся оторвать покрытие от детали. При толщине слоя более 0,3 мм возможен отрыв покрытия по концам плоских поверхностей.

Для предупреждения скалывания или выкрашивания покрытия по внешнему периметру плоской поверхности делают специальные канавки .

Подготовка плоских деталей под покрытия состоит в нарезании «рваных» канавок на строгальных станкахили создании грубой шероховатой поверхности электрическими способами. На поверхностях небольших плоских деталей нарезают на токарных или карусельных станках «рваные» канавки в виде архимедовой спирали. На строгальных станках отрезными резцами с закругленным лезвием можно нарезать параллельные канавки и прикатать вершины канавок. Прикатанные поверхности подвергаются пескоструйной обработке. Канавки должны располагаться перпендикулярно к направлению действия нагрузки.

При толщине покрытия более 0,5 мм подготовка детали состоит внарезании канавок в форме ласточкина хвоста с шагом 2 - 3 мм или в установке шпилек (в шахматном порядке) с насечкой промежутков зубилом.

У деталей сложной формы для заделки трещин, раковин и плоских деталей применяют пескоструйную обработку сухим кварцевым песком с размером частиц 1,5 - 2 мм.

В отдельных случаях шероховатые поверхности и получают, наматывая на деталь очищенную от окалины проволоку диаметром 0,5 - 1,6 мм с шагом, равным двум - пяти диаметрам проволоки. Намотанную проволоку закрепляют сваркой, после чего проводят пескоструйную обработку.

Для получения высокого качества покрытия струю распыленного металла направляют перпендикулярно к обрабатываемой детали и выдерживают расстояние от сопла металлизатора до изделия (детали) в пределах 150 - 200 мм. Вначале металл наносят на участки детали с резкими переходами, углами, галтелями, уступами, а затем осуществляют металлизацию всей поверхности, равномерно наращивая металл. Требуемые размеры, качество отделки и правильную геометрическую форму поверхностей, покрытых распыленным металлом, получают при окончательной механической обработке.

Работы по восстановлению изношенных деталей металлизацией связаны с загрязнением окружающего воздуха пылью и парами распыляемого металла, действием электрической дуги, а также шумами, издаваемыми аппаратами. В соответствии с требованиями охраны труда при использовании металлизационной установки в цехе или закрытом помещении должна быть установлена вентиляция. В условиях обычно применяемого типового металлизационного оборудования эта вентиляция состоит из системы местных отсосов, которые должны быть установлены у каждого рабочего места (пескоструйного шкафа, кабины, токарного станка). На основании опыта эксплуатации металлизационных установок скорость движения воздуха в плоскости принимают не менее 1 - 1,2 м/с, а в сечении открытого горизонтального зонта у токарного станка не менее 4 м/с. Воздух, отсасываемый из пескоструйного шкафа, подлежит обязательной очистке от пыли в пылесборниках, устанавливаемых вне помещений, или в циклонах. Кроме того, помещение для металлизационной установки предприятия должно быть оборудовано в зимнее время системой приточной вентиляции с подогревом воздуха, подаваемого в помещение. Для защиты глаз от действия ультрафиолетовых лучей необходимо пользоваться очками с темными стеклами.