Монтаж полупроводниковых элементов на шасси. Правила монтажа и эксплуатации полупроводниковых приборов. Защита кристалла от воздействия внешней среды

ВВЕДЕНИЕ

Современный мир трудно представить без полупроводниковых приборов. Они открывают большие возможности в самых различных областях науки, техники, быту, медицине, военной и аэрокосмической отраслях.

Основной целью дипломного проекта является разработка стендов для изучения и исследования полупроводниковых приборов с использованием современных компонентов оборудования «Основы аналоговой электроники» предназначенных для быстрого освоения лабораторного практикума по разделам курсов «Электронная техника», «Промышленная электроника», «Электроника и микроэлектроника».

В проекте рассмотрены следующие вопросы:

классификация полупроводниковых приборов и их применение в преобразователях энергии и передаче информации;

система условных обозначений диодов и транзисторов. Основные характеристики и параметры. Способы охлаждения. Расчёт нагрузочной способности;

исследования силовых полупроводниковых приборов на лабораторном стенде;

специальные типы диодов. Система условных обозначений. Основные характеристики и параметры;

транзисторы. Система обозначений. Основные характеристики и параметры;

охрана труда и техника безопасности при проведении работ;

технико-экономический расчет;

безопасность в чрезвычайных ситуациях.

КЛАССИФИКАЦИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ И ИХ ПРИМЕНЕНИЕ В ПРЕОБРАЗОВАТЕЛЯХ ЭНЕНРГИИ И ПЕРЕДАЧЕ ИНФОРМАЦИИ

Назначение и классификация полупроводниковых приборов

Полупроводниковыми приборами называются электронные устройства, действие которых основано на электронных процессах в полупроводниках. В электронике полупроводниковые приборы используются для обработки электрических сигналов, а также для преобразования одних видов энергии в другие. Полупроводниковые приборы делятся на дискретные и интегральные.

Дискретные полупроводниковые приборы, выполняются в виде отдельных устройств, различаются по назначению, виду характеристик, типу материала, принципу действия, области применения, конструкции и технологии. К их основным классам относят:

электропреобразовательные приборы (диод, транзистор, тиристор и другие);

оптоэлектронные приборы, преобразующие световые сигналы в электрические и наоборот (фоторезистор, фотодиод, фототранзистор, полупроводниковый лазер, излучающий диод и т.д.);

термоэлектрические, преобразующие тепловую энергию в электрическую и наоборот (термоэлемент, термоэлектрический генератор, терморезистор и т.п.);

магнитоэлектрические приборы (измерительный преобразователь на основе эффекта Холла);

пьезоэлектрические и тензометрические приборы, реагирующие на изменение давления или механическое смещение.

Интегральные полупроводниковые приборы являются активными элементами интегральных схем. Интегральные схемы состоят из интегральных диод, транзистор, тиристор, резисторов, конденсаторов и соединений между ними. Элементы интегральных схем создаются в едином техническом цикле на одном кристалле полупроводника. Если же пассивные элементы изготавливают отдельно на диэлектрической подложке, а активные элементы устанавливают в схему в виде дискретных бескорпусных полупроводниковых приборов, то интегральная схема называется гибридной.

Интегральные системы классифицируются по областям использования (аналоговые и цифровые). Цифровые включают в себя логические, счетно-преобразовательные и интегральные схемы памяти. Аналоговые интегральные схемы охватывают приборы усиления, источники вторичного питания, сверхвысокочастотные схемы.

В зависимости от применяемого полупроводникового материала различают германиевые. Кремневые, арсенид-галлиевые и другие приборы.

По конструктивным и технологическим признакам полупроводниковые приборы разделяют на точечные и плоскостные. Плоскостные в свою очередь делятся на диффузионные, мезапланарные, планарные и другие. Основной технологией полупроводниковых приборов является планарная технология.

В зависимости от мощности преобразуемых сигналов различают полупроводниковые приборы малой мощности (токи до 10А) и силовые полупроводниковые приборы (СПП).

Применение полупроводниковых приборов в преобразователях энергии и передаче информации.

Преобразователь электрической энергии - это электротехническое устройство, предназначенное для преобразования параметров электрической энергии (Рис.1.1)

Рис 1.1. Классификация по характеру преобразования

Выпрямители

Выпрямители делятся на выпрямители тока и выпрямители напряжения.

В выпрямителях тока ток на выходе протекает в одном направлении, а мгновенные значения напряжения на выходе могут менять полярность. В качестве вентилей в них применяют диоды и тиристоры.

В выпрямителях напряжения напряжение на выходе не меняет полярность, а ток на выходе может менять направление. В качестве вентилей в них применяют диоды и транзисторы или запираемые тиристоры.

В настоящее время основное применение имеют выпрямители тока. Именно они рассматриваются в этой и последующих главах. Для сокращения в дальнейшем будем называть их просто выпрямителями, опуская слово тока.

Выпрямители напряжения сложнее и будут рассмотрены позже. Выпрямители тока классифицируются по ряду признаков (рис. 1.2).

Рис. 1.2 Классификация выпрямителей

1. По числу фаз выпрямители делятся:

а) на однофазные, которые питаются от однофазной сети;

б) на многофазные, которые питаются от многофазной сети.

2. По числу выпрямляемых полуволн выпрямители делятся:

а) на однополупериодные;

б) на двух полупериодные.

3. По построению схем выпрямители делятся на следующие:

а) нулевые (однотактные, в которых ток по вторичной обмотке трансформаторов протекает в одном направлении);

б) мостовые (двухтактные, в которых ток по вторичной обмотке трансформаторов протекает в двух направлениях). В мостовой схеме трансформатор может отсутствовать.

4. По мощности выпрямители делятся на следующие:

а) малой мощности (до сотен ватт);

б) средней мощности (до десятков киловатт);

в) большой мощности (сотни и тысячи киловатт).

5. По возможностям управления выпрямители делятся:

а) на неуправляемые, выполненные на диодах;

б) на управляемые, выполненные на тиристорах.

На рис. 1.3 приведена обобщенная структурная схема выпрямителя, содержащая сетевой фильтр СФ, трансформатор Т, вентильный блок ВБ, сглаживающий фильтр СГФ, стабилизатор СТ, систему управления СУ и нагрузку Н. Энергия из сети подается через сетевой фильтр, служащий для уменьшения вредного влияния выпрямителя на питающую сеть. Трансформатор служит для согласования выпрямленного напряжения и напряжения сети, а также для потенциального разделения нагрузки и сети. Вентильный блок служит для выпрямления переменного тока. Сглаживающий фильтр осуществляет фильтрацию (сглаживание) выпрямленного напряжения. Стабилизатор обеспечивает поддержание с необходимой точностью требуемой величины постоянного напряжения на нагрузке в условиях изменения напряжения питающей сети и тока нагрузки. Система управления в управляемом выпрямителе обеспечивает регулирование выпрямленного напряжения.

Рис. 1.3. Обобщённая структурная схема выпрямителя

Не все указанные блоки обязательно присутствуют в схеме. В зависимости от предъявляемых требований могут отсутствовать все блоки, кроме ВБ. Однако, в большинстве случаев необходим и трансформатор. Поэтому в дальнейшем процессы рассматриваются для комплекта Т - ВБ. Наличие сглаживающего фильтра оказывает значительное влияние на режим работы выпрямителя и его элементов. Существенным при этом является характер входной цепи сглаживающего фильтра, определяющий совместно с внешней нагрузкой вид нагрузки выпрямителя.

Возможны следующие виды нагрузок выпрямителя (с учетом фильтра):

а) активная;

б) активно-индуктивная (например, выпрямитель работает на обмотку возбуждения двигателя);

в) активно-индуктивная с противо-ЭДС (выпрямитель работает на якорь двигателя);

г) активно-емкостная (емкостный фильтр).

В виду сложности расчетов выпрямителей, анализ процессов в них в первом приближении выполняется при упрощающих допущениях об индуктивности нагрузки. Принимается, что либо индуктивность в цепи выпрямленного тока L d =0, либо L d =∞.

Инверторы

Классификация инверторов

Инвертирование - это преобразование постоянного тока в переменный. Существует два типа инверторов: ведомые и автономные.

Ведомые инверторы (ВИ) работают на сеть, в которой есть другие источники электроэнергии. Коммутации вентилей в них осуществляются за счет энергии этой сети. Частота на выходе ВИ равна частоте сети, а напряжение - напряжению сети.

Автономные инверторы (АИ) - это инверторы, которые работают на сеть, в которой нет других источников электроэнергии. Коммутации вентилей в них осуществляются благодаря применению полностью управляемых вентилей или устройств искусственной коммутации. При этом частота на выходе АИ определяется частотой управления, а напряжение – параметрами нагрузки и системой регулирования.

Наиболее часто ведомые инверторы применяются, когда нужно отдать механическую энергию, запасенную в маховых массах электродвигателя и рабочей машины, обратно в сеть. Торможение электропривода, осуществляемое таким образом, является наиболее энергетически эффективным. Количество возвращаемой энергии может быть весьма велико.

Автономные инверторы применяются для получения регулируемой частоты в электроприводах переменного тока, а также для получения более высоких частот в электротермических и электротехнологических установках. Они являются основной частью преобразователей частоты.

Переход от выпрямительного к инверторному режиму

Ведомые инверторы выполняются по тем же схемам, что и управляемые выпрямители. Переход от выпрямительного к инверторному режиму возможен в системе (рисунок 1.4 а), содержащей выпрямитель и электрическую машину (ЭМ). Реактор (индуктивность L d) между выпрямителем и ЭМ воспринимает на себя разницу мгновенных значений ЭДС выпрямителя и ПЭДС двигателя. На рисунке 1.4 б приведены диаграммы токов и напряжений, иллюстрирующие процессы в выпрямителе, нагруженном на ЭМ, работающую в двигательном режиме. ЭДС выпрямителя создается в основном положительными участками полуволн напряжения и ее среднее значение положительно. Также положительна ПЭДС двигателя.

Если угол управления увеличить до 90°, то ЭДС выпрямителя уменьшится до нуля, и двигатель остановится. При этом ЭДС выпрямителя в одинаковой степени создается положительными и отрицательными участками полуволн напряжения (рисунок 1.4 в).

Изменение направления потока мощности в системе, содержащей вентили, возможно только по второму способу, описанному выше. Для того чтобы перейти из выпрямительного режима в инверторный нужно:

1) привести во вращение ЭМ в другом направлении, подведя к ней механическую энергию и переведя ее в генераторный режим;

2) увеличить угол управления (больше 90°), чтобы в основном использовать отрицательные участки полуволн напряжения сети и сделать среднее значение ЭДС инвертора отрицательным (рисунок 1.4 г).

При описании процессов в ведомом инверторе, кроме угла управления a (угла запаздывания), используется угол управления b (угол опережения), отсчитываемый от точки, находящейся через 180° от точки естественной коммутации. Следовательно,β = 180°-α.

Угол управления β не может достигать 0°, т.к. требуется время на восстановление запирающих свойств тиристора в прямом направлении (рисунок 1.4 г).

Рис. 1.4. Переход из выпрямленного в инверторный режим в трёхфазной нулевой схеме (а); б, в, г – диаграммы токов и напряжений при различных углах α.

Регулировочные и внешние характеристики ведомого инвертора

Преобразователь, который может работать как в выпрямительном, так и в инверторном режиме назовем ведомым преобразователем. На рисунке 1.5 приведены внешние и регулировочные характеристики ведомого инвертора в режиме непрерывного тока совместно с характеристиками выпрямителя.

Рис.1.5. Регулировочные характеристики преобразователя в непрерывном и прерывистом режиме при работе на ПЭДС (а) и его внешние характеристики в непрерывном режиме (б)

Напряжение на зажимах постоянного тока инвертора назовем инвертируемым напряжением. Так как оно измеряется между теми же точками, что и выпрямленное, то будем обозначать их одинаково - U d . Закон изменения этого напряжения при изменении угла управления тот же, что и в выпрямительном режиме. Поэтому регулировочная характеристика ведомого преобразователя в непрерывном режиме (рис. 1.5 а) определяется тем же уравнением

U daо = U d о cosα . (1.1)

Коммутация вентилей происходит за счет напряжения сети, и на участке коммутации напряжение идет посредине между фазными ЭДС (рис. 7.4 а - б). За счет дополнительной коммутационной площадки с ростом тока напряжение по модулю увеличивается.

Внешние характеристики приведены на рисунке 1.5 б.

Рисунок 1.6. Диаграммы токов и напряжений в ведомом инверторе при Х d =∞, X a ≠ 0 для трёхфазной нулевой (а) и мостовой (б) схем

В первом квадранте (для выпрямителя) они связывают выходные величины и являются выходными. Характеристики в 4-м квадранте (ведомого инвертора) связывают входные величины (по энергетическому каналу) и поэтому являются входными. Внешние характеристики выпрямителя по смыслу являются выходными, и поэтому выходное напряжение за счет внутреннего сопротивления с ростом тока падает. Внешние характеристики инвертора являются по смыслу входными и поэтому, если необходимо «загнать» в инвертор больший ток, нужно подать на вход большее напряжение.

Внешние характеристики с учетом наличия области прерывистого режима приведены на рисунке 1.7.

Рисунок 1.7. Внешние характеристики ведомого преобразователя, выполненного по трёхфазной нулевой (а) и трёхфазной мостовой (б) схемам.

Преобразователи частоты

Преобразователи частоты (ПЧ) предназначены для преобразования переменного напряжения одной частоты в переменное напряжение другой частоты. Преобразователи частоты для частотно-регулируемых электроприводов преобразуют электроэнергию, поступающую из сети переменного тока, в электроэнергию с меняющейся по заданным законам частотой и напряжением.

Преобразователи частоты по построению могут быть разбиты на два типа:

а) двухзвенные преобразователи частоты (ДПЧ);

б) непосредственные преобразователи частоты (НПЧ).

В ДПЧ первое звено представляет собой выпрямитель (управляемый или неуправляемый) с фильтром на выходе, а второе - автономный инвертор. Таким образом, нагрузка связана с сетью через два звена, и происходит двукратное преобразование энергии. Второе звено в ДПЧ может быть выполнено как на основе автономного инвертора напряжения (АИН), так и на основе автономного инвертора тока (АИТ).

ДПЧ позволяют получить на выходе частоты как меньшие, так и большие входных. Их недостаток - двойное преобразование энергии, ведущее к увеличению потерь.

НПЧ выполняются на основе реверсивных преобразователей. Однофазный НПЧ представляет собой двухкомплектный реверсивный преобразователь, на выходе которого подключена нагрузка. Каждый комплект вентилей пропускает одну полуволну тока. Трехфазный НПЧ представляет собой три реверсивных преобразователя, каждый из которых питает одну фазу нагрузки.

НПЧ позволяют получить на выходе частоты, только меньшие входных. В НПЧ происходит однократное преобразование энергии.

Принцип действия НПЧ

В НПЧ напряжение сети подается непосредственно на двигатель черезуправляемые вентили. Каждая фаза НПЧ выполняется на основ реверсивногодвухкомплектного преобразователя с раздельным или совместнымуправлением комплектами.

На рисунке 1.8 а приведена схема трехфазно-однофазного НПЧ, выполненного на основе трехфазных нулевых схем, преобразующего трехфазное напряжение сети частотой 50 Гц в однофазное с регулируемой частотой. При переключении комплектов В и Н на выходе формируется двуполярное напряжение. Возможны два закона управления - прямоугольный и синусоидальный. При прямоугольном управлении в течение полуволны тока на один комплект подаются управляющие импульсы с углом управления (углом задержки) a = const пока этот комплект работает в выпрямительном режиме, а затем с углом управления (углом опережения) b = a, когда для снижения тока необходим переход в инверторный режим (рисунок 1.8 б). После бестоковой паузы аналогично подаются управляющие импульсы на второй комплект.

При синусоидальном управлении угол управления a непрерывно меняется так, чтобы гладкая составляющая выходного напряжения изменялась по синусоидальному закону (рисунок 1.8 в).

Рисунок 1.8. Схема трёхфазно-однофазного НПЧ (а), диаграммы напряжения и тока нагрузки при прямоугольном управлении (б) и диаграммы напряжения на нагрузке при синусоидальном управлении (в)

Схема трехфазно-трехфазного НПЧ, выполненного на основе трехфазных мостовых схем приведена на рисунке 1.9. Эта схема требует разделения фаз нагрузки.

Рисунок 1.9. Схема трёхфазно-трёхфазного НПЧ

Введение

Лабораторные занятия по курсу «Электронная преобразовательная техника» дают представление о физических свойствах, параметрах и характеристиках дискретных полупроводниковых приборов.

Лабораторный стенд имеет источники питания, наборную панель с гнёздами и клеммами для сборки электрических схем, необходимых для снятия характеристик используемого прибора. На рабочем месте имеется комплект проводов с наконечниками, измерительными и исследуемыми приборами. На рисунке 3.1 представлен план учебной лаборатории.

Рисунок 3.1 План учебной лаборатории

Входное напряжение блока питания 127 В. Выходное напряжение постоянное:

0…15 В 0,5 А – регулируемый G1;

0…15 В 0,5 А – регулируемый G2;

0…5 В 3 А – регулируемый G3.

Регулируемые источники питания имеют защиту от короткого замыкания. При срабатывании защиты необходимо выключить стенд и выдержать в таком состоянии 5…10 сек.

Источник питания выполнен в виде отдельного модульного элемента в корпусе и вмонтирован в лабораторный стенд.

Источник питания осеспечивает

200 В; 0,1 А – нерегулируемый;

50 В; 5 А – нерегулируемый;

5 В; 0,3 А – для питания входных цепей транзисторов, регулируемый 0…4,5 В;

15 В; 0,5 А – для питания выходных цепей транзисторов, регулируемый 0…14 В.

Виды и обозначение диодов

В зависимости от свойств и поведения ВАХ различают следующие виды диодов.

1) Выпрямительные диоды различных классов, отличающиеся напряжением, временем переключения, рабочей полосой частот. ВАХ как у обычного p-n -перехода. Обозначение стандартное (таблица 2.1). В качестве выпрямительных используют сплавные эпитаксиальные и диффузионные диоды, выполненные на основе несимметричных p-n-переходов. Для выпрямительных диодов характерны малые сопротивления и большие токи в прямом режиме. Барьерная емкость из-за большой площади перехода достигает значений десятков пикофарад. Германиевые выпрямительные диоды применяют до температур 70-80 о С, кремниевые до 120-150 о С, арсенид-галлиевые до 150 о С.

Основные параметры выпрямительных диодов:

U обр,макс –максимально допустимое обратное напряжение, которое диод может выдержать без нарушения его работоспособности;

I вып,ср - средний выпрямленный ток;

I пр,п – пиковое значение импульса тока при заданных максимальной длительности, скважности и формы импульса;

U пр,ср – среднее прямое напряжение диода при заданном среднем значении прямого тока;

P ср – средняя за период мощность, рассеиваемая диодом, при протекании тока в прямом и обратном направлениях;

r диф – дифференциальное сопротивление диода в прямом режиме.

Стоит отметить класс импульсных диодов, имеющих очень малую длительность переходных процессов из-за малых емкостей переходов (доли пикофарад); уменьшение емкостей достигается за счет уменьшения площади p-n -перехода, поэтому допустимые мощности рассеяния у них меньше, чем у низкочастотных выпрямительных диодов. Их используют в импульсных схемах.

К параметрам, перечисленным выше, для импульсных диодов следует отнести общую емкость С Д, максимальные импульсные прямые и обратные напряжения и токи, время установления прямого напряжения от момента подачи импульса прямого тока до достижения им заданного значения прямого напряжения и время восстановления обратного сопротивления диода с момента прохождения тока через нуль до момента, когда обратный ток достигает заданного малого значения (рисунок 4.1).

Рисунок 4.1 Ток обратной ветви

После изменения полярности напряжения в течение времени t 1 обратный ток меняется мало, он ограничен только внешним сопротивлением цепи. При этом заряд неосновных носителей, накопленных в базе диода, рассасывается. Далее ток уменьшается до своего статического значения при полном рассасывании заряда в базе.

2) Стабилитроны – диоды, предназначенные для работы в режиме электрического пробоя. Условное обозначение отличается от стандартного (таблица 2.1). В этом режиме при значительном изменении тока стабилитрона напряжение на нем меняется мало. В низковольтных (до 5,7В) стабилитронах используется туннельный пробой, а в высоковольтных – лавинный пробой. В них более высокоомная база.

Основные параметры:

U ст – напряжение стабилизации при заданном токе в режиме пробоя;

I ст,мин и I ст,макс – минимально допустимый и максимально допустимый токи стабилизации;

r ст – дифференциальное сопротивление стабилитрона на участке пробоя;

Температурный коэффициент напряжения (ТКН) стабилизации при заданном токе стабилизации. Туннельный пробой характеризуется отрицательным ТКН, а лавинный - положительным.

Для стабилизации малых напряжений (0,3…1,9В) используют диоды, называемые стабисторами, которые работают в прямом режиме, имеют специальную форму прямой ветви. Обозначение такое же, как у выпрямительных диодов.

3) Диод Шотки – разновидность выпрямительных диодов, работающий на основе выпрямляющего контакта металл – полупроводник, образующего контактную разность потенциалов из-за перехода части электронов из полупроводника n -типа в металл и уменьшения концентрации электронов в полупроводниковой части контакта. Эта область обладает повышенным сопротивлением. При подключении внешнего источника плюсом к металлу, а минусом к полупроводнику, потенциальный барьер понизится и через переход пойдет прямой ток.

В диоде Шотки отсутствуют явления накопления и рассасывания основных носителей, поэтому они очень быстродействующие и могут работать на частотах до десятков ГГц. Прямое напряжение составляет ~0,5 В, прямой допустимый ток может достигать сотни ампер, а обратное напряжение – сотен вольт. ВАХ диода Шотки напоминает характеристику обычных p-n-переходов, отличие состоит в том, что прямая ветвь в пределах 8-10 декад напряжения представляет почти идеальную экспоненциальную кривую, а обратные токи достаточно малы – 10 -10 …10 -9 А.

Конструктивно диоды Шотки выполняют в виде пластины из низкоомного кремния, на которую нанесена высокоомная эпитаксиальная пленка с электропроводностью того же типа. На поверхность пленки вакуумным напылением нанесен слой металла.

Диоды Шотки применяют в переключательных схемах, а также в выпрямителях больших токов и в логарифмирующих устройствах, из-за соответствующей вида его ВАХ.

4) Варикап – полупроводниковый диод, предназначенный для работы в качестве емкости, величина которой зависит от приложенного к нему напряжения. Основная его характеристика – вольт-фарадная С(U) (таблица 2.1).

Варикап работает как правило при обратном напряжении, при изменении которого изменяется в широких пределах барьерная емкость диода, причем:

, (4.1)

где С(0) – емкость при нулевом напряжении на диоде; - контактный потенциал; n=2 для резких и n =3 для плавных p-n-переходов.

Основные параметры варикапа:

С – емкость, измеренная между выводами при заданном обратном напряжении;

Коэффициент перекрытия по емкости;

r П – суммарное активное сопротивление диода;

Добротность, определяемая при заданном значении емкости.

5) Туннельный диод – полупроводниковый диод с падающим участком на прямой ветви ВАХ, обусловленный туннельным эффектом. Обозначение и ВАХ даны в таблице 2.1. Падающий участок характеризуется отрицательным дифференциальным сопротивлением.

В зависимости от функционального назначения туннельные диоды условно подразделяются на усилительные, генераторные и переключательные.

4.2. Основные параметры:

I П и U П – пиковые ток и напряжение начала падающего участка;

I В и U В – ток и напряжение впадины (конца падающего участка);

Отношение тока впадины к пиковому току;

U Р – диапазон напряжений падающего участка (раствор).

L Д – полная последовательная индуктивность диода при заданных условиях (рис.4.2, представляющий схему замещения диода на падающем участке ВАХ для малых изменений тока и напряжения на диоде).

Рисунок 4.2 Схема замещения диода

f 0 – резонансная частота, при которой общее реактивное сопротивление p-n-перехода и индуктивности корпуса обращается в нуль;

f R - предельная резистивная частота, при которой активная составляющая полного сопротивления последовательной цепи, состоящей из p-n-перехода и сопротивлений потерь, обращается в нуль;

К Ш – шумовая постоянная туннельного диода, определяющая коэффициент шума диода;

r П – сопротивление потерь, включающее сопротивление кристалла, контактных соединений и выводов.

Разновидностью туннельного диода является обращенный диод. Это полупроводниковый диод, физические явления в котором подобны физическим явлениям в туннельном диоде. Его рассматривают иногда как вариант туннельного диода. Здесь участок с отрицательным сопротивлением выражен более слабо, чем у туннельного, а иногда даже отсутствует. Обозначение и ВАХ даны в таблице. Обратная ветвь обращенного диода используется как прямая ветвь обычного диода.

Таблица 4.1

Тип диода Условное обозначение Характеристика
Выпрямительный
Диод Шотки
Стабилитрон
Стабистор
Варикап
Туннельный диод
Обращенный диод

Классификация транзисторов

Транзистор - это электропреобразовательный прибор, содержащий два и более p -n -переходов, имеющий три и более вывода и предназначенный для усиления мощности. В силовой электронике транзисторы практически всегда применяются только в ключевом режиме, то есть могут быть либо полностью открыты, либо полностью закрыты. Транзисторы обычно не допускают приложения к ним обратного напряжения и, поэтому, шунтируются встречно включенными диодами. Такое сочетание транзистора и диода будем называть транзисторным ключом.

В настоящее время существует множество различных типов транзисторов. На рисунке 6.1 приведена классификация основных типов транзисторов.

Транзисторы по принципу действия делятся на биполярные (управляемые током), униполярные (управляемые электрическим полем или полевые) и /GST-транзисторы. Аббревиатура IGBT - это сокращение названия Insulated gate bipolar transistor.В переводе это значит биполярный транзистор с изолированным затвором (БТИЗ).

В биполярных транзисторах ток определяется движением носителей зарядов обоих знаков: электронов и дырок, поэтому они называются биполярными.

В полевых транзисторах ток определяется шириной проводящего канала, по которому движутся носители зарядов одного знака, отсюда их другое название - униполярные.

IGBT -транзисторы являются гибридными, в них сочетаются положительные свойства биполярных и полевых транзисторов.

Биполярные транзисторы содержат три чередующихся слоя с различным типом проводимости. Средний слой структуры называется базой. Крайний слой, являющийся источником носителей заряда, называется эмиттером. Другой крайний слой, принимающий заряды, называется коллектором. В зависимости от порядка их чередования биполярные транзисторы делятся на транзисторы типа n-p-n и p-n-p.

Полевые транзисторы (ПТ) делятся по принципу действия на ПТ с затвором в виде p-n -перехода и на ПТ с изолированным затвором (ПТИЗ). Последние по их структуре называют также МОП-транзисторами.

Рис. 6.1. Классификация основных типов транзисторов (к - коллектор; э -эмиттер; б - база; с - сток; и - исток; з - затвор; п - подложка) (металл – окисел- полупроводник) или МДП-транзисторами (металл-диэлектрик - полупроводник).

Электрод, из которого выходят основные носители, называется истоком. Электрод, куда приходят основные носители, называется стоком. От истока к стоку носители движутся по каналу. Электрод, регулирующий ширину канала, называется затвором.

МОП-транзисторы могут быть выполнены с встроенным и с индуцированным каналом. МОП-транзисторы с встроенным каналом при отсутствии управляющего сигнала открыты (нормально открыты). МОП-транзисторы с индуцированным каналом при отсутствии управляющего сигнала закрыты (нормально закрыты).

Из полевых транзисторов МОП-транзисторы с индуцированным каналом получили наибольшее применение в преобразовательной технике.

В зависимости от типа полупроводника, из которого выполнен канал, ПТ делятся на ПТ с каналом n-типа и ПТ с каналом p -типа. Биполярные транзисторы с изолированным затвором (БТИЗ) или, как они сокращенно называются по-английски / GBT, представляют собой гибрид биполярного транзистора и ПТИЗ, сочетающий их лучшие свойства. БТИЗ - это сложная многослойная структура и процессы в ней весьма сложны. Поэтому на рисунке 6.2 приведена очень упрощенная схема замещения. При подаче на затвор З напряжения, положительного относительно точки Э, ПТИЗ открывается и начинает проходить ток от точки К через эмиттерно-базовый переход биполярного транзистора и открытый ПТИЗ к точке Э. При этом открывается биполярный транзистор, через который проходит ток от точки К к точке Э. Буквами Э, К, З обозначены эмиттер, коллектор и затвор БТИЗ. БТИЗ могут работать только в ключевом режиме.

БТИЗ в настоящее время получили наибольшее распространение в устройствах силовой электроники при мощностях от сотен Вт до тысячи кВт.

Рисунок 6.2. Упрощенная схема замещения БТИЗ

Анализ опасных факторов

Согласно ГОСТ 12.0.003-99 системы стандартов безопасности труда опасные и вредные производственные факторы подразделяют по природе действия на физические, химические, биологические и психофизиологические.

В таблице 8.1 приведены характеристики опасных и вредных производственных факторов, действующих на обслуживающий персонал.

Таблица8.1 Характеристика опасных и вредных производственных факторов (ОВПФ)

Продолжение таблицы 8.1

ОВПФ Источник Норма Документ Чем обеспечивается Защита
Повышенная температура воздуха 18÷20 ГОСТ12.1.005-91 Кондиционирование
Скорость движения воздуха До 0,2м/с ГОСТ12.1.005-91 Кондиционирование

В соответствии с требованиями ГОСТ 12.1.019-01, 12.1.038-01 мероприятия по защите работающих от действия электрического тока подразделяются на:

организационные;

коллективные;

индивидуальные.

К организационным мероприятиям относятся:

назначение лиц, ответственных за организацию и производство работ;

оформление работы распоряжением;

допуск к работе;

надзор во время работы.

К коллективным мероприятиям относятся:

отключения питания;

обеспечение невозможности ошибочного включения;

установка знаков безопасности и ограждение частей оставшихся под напряжением.

К индивидуальным мероприятиям относятся использование работающим индивидуальных средств защиты.

К техническим способам защиты относятся:

защитное заземление;

зануление;

защитное отключение.

Требование безопасности к оборудованию лаборатории отражены в ГОСТ 12.2.003-91.

Безопасность оборудования стендов обеспечивается:

выбором рациональных конструкций и безопасностью их элементов;

применением средств автоматизации, дистанционного управления, блокировок, сигнализации и средств защиты;

герметизацией оборудования;

мероприятиями по снижению нервно-психических нагрузок и выполнению требований эргономики.

Министерство Науки и Образования

Реферат на тему:

Применение полупроводниковых приборов

Выполнил:

ученик 10-В класса

Средней Общеобразовательной

Школы №94

Гладков Евгений

Проверила:

Ольга Петровна

г. Харьков, 2004.


Полупроводниковые приборы – различные по конструкции, технологии изготовления и функциональному назначению электронные приборы, основанные на использовании свойств полупроводников. К полупроводниковым приборам относят также полупроводниковые микросхемы, которые представляют собой монолитные законченные функциональные узлы (усилитель, триггер, набор элементов), все компоненты которых изготавливаются в едином технологическом процессе.

Полупроводники – вещества, электронная проводимость которых имеет промежуточное значение между проводимостью проводников и диэлектриков. К полупроводникам относится обширная группа естественных и синтетических веществ различной химической природы, твердых и жидких, с разными механизмами проводимости. Наиболее перспективными полупроводниками в современной технике являются так называемые электронные полупроводники, проводимость которых обусловлена движением электронов. Однако в отличие от металлических проводников концентрация свободных электронов в полупроводниках очень мала и возрастает с повышением температуры, чем объясняется их пониженная проводимость и специфическая зависимость от удельного сопротивления и температуры: если у металлических проводников при нагревании электрическое сопротивление повышается, то у полупроводников оно понижается. Увеличение концентрации свободных электронов с повышением температуры объясняется тем, что с увеличением интенсивности тепловых колебаний атомов полупроводников все большее количество электронов срывается с внешних оболочек этих атомов и получает возможность перемещаться по объему полупроводника. В переносе электричества через полупроводники, помимо свободных электронов могут принимать участие места, освободившиеся от перешедших в свободное состояние электронов – так называемые дырки.

Поэтому и свободные электроны и дырки называют носителями электрического заряда, причём дырке приписывают положительный заряд, равный заряду электрона. В идеальном полупроводнике образование свободных электронов и дырок происходит одновременно, парами, а потому концентрации электронов и дырок одинаковы. Введение же в полупроводник определенных примесей способно привести к увеличению концентрации носителей одного знака и сильно повысить проводимость. Это происходит при условии, что на внешней оболочке атомов примеси находится на один электрон больше (донорные примеси) или на один электрон меньше (акцепторные примеси), чем у атомов исходного полупроводника. В первом случае примесные атомы (доноры) легко отдают лишний электрон, а во втором (акцепторы)– забирают недостающий электрон от атомов полупроводника, создавая дырку. Для наиболее распространённых полупроводников (кремния и германия), являющихся четырёхвалентными химическими элементами, донорами служат пятивалентные вещества (фосфор, мышьяк, сурьма), а акцепторами – трехвалентные (бор, алюминий, индий). В зависимости от преобладающего типа носителей примесные полупроводники делят на полупроводники электронного (п-типа) и дырочного (р-типа).

Зависимость электропроводимости полупроводника от различных внешних воздействий служит основой разнообразных технических приборов. Так, уменьшение сопротивления используется в термисторах, уменьшение сопротивления при освещении– в фоторезисторах. Появление ЭДС при прохождении тока через полупроводник, помещённый в магнитное поле (эффект Холла) применяется для измерения магнитных полей, мощности и т.д. Особенно ценными свойствами обладают неоднородные полупроводники (с изменяющейся от одной части объёма к другой проводимостью), а также контакты разных полупроводников между собой и полупроводников с металлами. Возникающие в таких системах эффекты наиболее ярко проявляются у электронно-дырочных переходов (р-п-переходом). Использование р-п-переходов лежит в основе действия многих полупроводниковых приборов: транзистора, полупроводникового диода, полупроводникового фотоэлемента, термоэлектрического генератора, солнечной батареи.

60-е – 70-е годы составляют эпоху полупроводниковой техники и собственно электроники. Электроника внедряется во все отрасли науки, техники и народного хозяйства. Являясь комплексом наук, электроника тесно связана с радиофизикой, радиолокацией, радионавигацией, радиоастрономией, радиометеорологией, радиоспектроскопией, электронной вычислительной и управляющей техникой, радиоуправлением на расстоянии, телеизмерениями, квантовой радиоэлектроникой.

В этот период продолжалось дальнейшее усовершенствование электровакуумных приборов. Большое внимание уделяется повышению их прочности, надёжности, долговечности. Разрабатывались пальчиковые и сверхминиатюрные лампы, что давало возможность снизить габариты установок, насчитывающих большое количество радиоламп.

Продолжались интенсивные работы в области физики твёрдого тела и теории полупроводников, разрабатывались способы получения монокристаллов полупроводников, методы их очистки и введения примесей. Большой вклад в развитие физики полупроводников внесла советская школа академика А.Ф.Иоффе.

Полупроводниковые приборы быстро и широко распространились за 50-е-70-е годы во все области народного хозяйства. В 1926 г. был предложен полупроводниковый выпрямитель переменного тока из закиси меди. Позднее появились выпрямители из селена и сернистой меди. Бурное развитие радиотехники (особенно радиолокации) в период второй мировой войны дало новый толчок к исследованиям в области полупроводников. Были разработаны точечные выпрямители переменных токов СВЧ на основе кремния и германия, а позднее появились плоскостные германиевые диоды. В 1948 г. американские учёные Бардин и Браттейн создали германиевый точечный триод (транзистор), пригодный для усиления и генерирования электрических колебаний. Позднее был разработан кремниевый точечный триод. В начале 70-х годов точечные транзисторы практически не применялись, а основным типом транзистора являлся плоскостной, впервые изготовленный в 1951 г. К концу 1952 г. были предложены плоскостной высокочастотный тетрод, полевой транзистор и другие типы полупроводниковых приборов. В 1953 г. был разработан дрейфовый транзистор. В эти годы широко разрабатывались и исследовались новые технологические процессы обработки полупроводниковых материалов, способы изготовления p-n- переходов и самих полупроводниковых приборов. В начале 70-х годов, кроме плоскостных и дрейфовых германиевых и кремниевых транзисторов, находили широкое распространение и другие приборы, использующие свойства полупроводниковых материалов: туннельные диоды, управляемые и неуправляемые четырёхслойные переключающие приборы, фотодиоды и фототранзисторы, варикапы, терморезисторы и т.д.

Развитие и совершенствование полупроводниковых приборов характеризуется повышением рабочих частот и увеличением допустимой мощности. Первые транзисторы обладали ограниченными возможностями (предельные рабочие частоты порядка сотни килогерц и мощности рассеяния порядка 100 - 200 МВт) и могли выполнять лишь некоторые функции электронных ламп. Для того же диапазона частот были созданы транзисторы с мощностью в десятки ватт. Позднее были созданы транзисторы, способные работать на частотах до 5 МГц и рассеивать мощность порядка 5 Вт, а уже в 1972 г. были созданы образцы транзисторов на рабочие частоты 20 - 70 МГц с мощностями рассеивания, достигающими 100 Вт и более. Маломощные же транзисторы (до 0,5 - 0,7 Вт) могут работать на частотах свыше 500 МГц. Позже появились транзисторы, работающие на частотах порядка 1000 МГц. Одновременно велись работы по расширению диапазона рабочих температур. Транзисторы, изготовленные на основе германия, имели первоначально рабочие температуры не выше +55 ¸ 70 °С, а на основе кремния - не выше +100 ¸ 120 °С. Созданные позже образцы транзисторов на арсениде галлия оказались работоспособными при температурах до +250 °С, и их рабочие частоты в итоге увеличились до 1000 МГц. Есть транзисторы на карбиде, работающие при температурах до 350 °С. Транзисторы и полупроводниковые диоды по многим показателям в 70-е годы превосходили электронные лампы и в итоге полностью вытеснили их из областей электроники. В интегральной электронике МДП-структуры широко используются для создания транзисторов и на их основе различных интегральных микросхем.

Перед проектировщиками сложных электронных систем, насчитывающих десятки тысяч активных и пассивных компонентов, стоят задачи уменьшения габаритов, веса, потребляемой мощности и стоимости электронных устройств, улучшения их рабочих характеристик и, что самое главное, достижения высокой надёжности работы. Эти задачи успешно решает микроэлектроника - направление электроники, охватывающее широкий комплекс проблем и методов, связанных с проектированием и изготовлением электронной аппаратуры в микроминиатюрном исполнении за счёт полного или частичного исключения дискретных компонентов.

Основной тенденцией микроминиатюризации является "интеграция" электронных схем, т.е. стремление к одновременному изготовлению большого количества элементов и узлов электронных схем, неразрывно связанных между собой. Поэтому из различных областей микроэлектроники наиболее эффективной оказалась интегральная микроэлектроника, которая является одним из главных направлений современной электронной техники. Сейчас широко используются сверхбольшие интегральные схемы, на них построено всё современное электронное оборудование, в частности ЭВМ и т.д.

Срок службы полупроводниковых триодов и их экономичность во много раз больше, чем у электронных ламп. За счёт чего транзисторы нашли широкое применение в микроэлектронике - теле-, видео-, аудио-, радиоаппаратуре и, конечно же, в компьютерах. Они заменяют электронные лампы во многих электрических цепях научной, промышленной и бытовой аппаратуры.

Биполярный транзистор – универсальный полупроводниковый усилительный прибор, выполняющий те же функции, что и электронная лампа с управляющей сеткой. По аналогии с лампой, биполярный транзистор называют полупроводниковым триодом. Его действие основано на использовании особых свойств неоднородных полупроводников. Особенность транзистора состоит в том, что между электронно-дырочными переходами существует взаимодействие – ток одного из переходов может управлять током другого.

Помимо усиления электрических колебаний, биполярные транзисторы широко используются как бесконтактные коммутационные устройства, в разнообразных генераторных схемах, для преобразования и детектирования колебаний, причём от соответствующих ламповых устройств схемы с биполярными транзисторами отличаются миниатюрностью, высокой экономичностью питания, большой механической прочностью, мгновенной скоростью к действию, большой долговечностью. Максимальные рабочие частоты самых высокочастотных биполярных транзисторов превышают 10000 МГц, наибольшие мощности – примерно 200-250 Вт. К недостаткам биполярных транзисторов относится существенная температурная зависимость их характеристик.

Основные материалы, из которых изготовляют транзисторы - кремний и германий, перспективные – арсенид галлия, сульфид цинка и широкозонные проводники.

Полевой транзистор – полупроводниковый прибор, в котором ток изменяется в результате действия перпендикулярного току электрического поля, создаваемого сигналом. Полевой транзистор отличается от биполярного тем, что используемый в нём механизм усиления обусловлен носителями заряда только одного знака (электронами или дырками). Полевой транзистор называют также канальным и униполярным транзистором.

Полевые транзисторы имеют ВАХ (вольт-амперные характеристики), подобные ламповым, и обладают всеми принципиальными преимуществами транзисторов. Это позволяет применять их в схемах, в большинстве случаев использовались электронные лампы, например, в усилителях постоянного тока с высокоомным входом, в истоковых повторителях с особо высокоомным входом, в электрометрических усилителях, различных реле времени, RS - генераторах синусоидальных колебаний низких и инфранизких частот, в генераторах пилообразных колебаний, усилителях низкой частоты, работающих от источников с большим внутренним сопротивлением, в активных RC - фильтрах низких частот. Полевые транзисторы с изолированным затвором используют в высокочастотных усилителях, смесителях, ключевых устройствах.

Полевые транзисторы имеют вольт-амперные характеристики, подобные ламповым, и обладают всеми принципиальными преимуществами транзисторов.

Полупроводниковый диод – двухэлектродный полупроводниковый прибор, действие которого основано на использовании свойств электронно-дырочного перехода. Основное свойство полупроводникового диода – односторонняя проводимость, позволяющая применять полупроводниковые диоды в качестве выпрямителей переменного тока. Прообразом современных полупроводниковых диодов был кристаллический детектор, состоящий из кристалла (карборунда, цинкита) и металлической пружинки, острие которой прижималось к поверхности кристалла. Эффект выпрямления у таких детекторов зависел от выбранной точки соприкосновения пружинки с кристаллом и отличался большой неустойчивостью, что требовало периодических поисков "чувствительной" точки. В современных точечных полупроводниковых диодах используются пластинки из кристаллов кремния или германия, а контакт металлической иглы с полупроводником подвергается особой электрической формовке. Эти меры наряду с применением герметической оболочки обеспечивают большую стабильность и долговечность точечных полупроводниковых диодов. Помимо детектирования радиосигналов всех частот вплоть до сотен тысяч МГц, точечные полупроводниковые диоды применяются для преобразования частоты, в измерительной радиоаппаратуре и т.д. и т.п. Наиболее обширную группу полупроводниковых диодов образуют плоскостные диоды, в которых электронно-дырочный переход создается теми же методами, что и в плоскостных транзисторах: вплавлением примесей, путем диффузии примесных веществ в объем исходной пластинки. Полупроводниковые диоды применяются также для многих других целей, в том числе для селекции импульсов определенной полярности, для стабилизации напряжения, в качестве управляемого конденсатора и др. Особыми разновидностями полупроводникового диода являются переключающие диоды с тремя р-п-переходами, двухбазовый диод (применяют главным образом в импульсных пусковых схемах) и туннельный диод, фотодиод и обращенный диод.

Туннельный диод – двухэлектродный диод полупроводниковый прибор, который применяется для усиления и генерирования высокочастотных электрических колебаний и в качестве быстродействующего переключателя в импульсных и электронных логических устройствах. Принцип работы туннельных диодов основан на явлении квантовомеханического туннельного эффекта. Туннельные диоды применяются в широкополосных усилителях, для усиления и генерирования высокочастотных электрических колебаний и в качестве быстродействующего переключателя в импульсных и электронных логических устройствах.

Фотодиод – полупроводниковый фотоэлектрический прибор с внутренним фотоэффектом, отображающим процесс преобразования световой энергии в электрическую. Внутренний фотоэффект заключается в том, что под воздействием энергии светового излучения в области р-п-перехода происходит ионизация атомов основного вещества и смеси, в результате чего генерируются пары носителей заряда – электрон и дырка. Во внешней цепи, присоединенной к р-п-переходу, возникает ток, вызванный движением этих носителей. Промышленность выпускает германиевые и кремниевые фотодиоды. Разновидность фотодиода, используемого для силового преобразования лучистой энергии, – солнечная батарея, которая является важным источником питания в космической технике, но находит применение для питания аппаратуры и в земных условиях.

Полупроводниковый стабилизатор напряжения (стабилитрон) – это кремниевый плоскостной полупроводниковый диод, напряжение на котором сохраняется с определенной точностью при протекании через него тока в заданном диапазоне. Т.е., если стабилитрон рассчитан на прибивное напряжение 4,5в и напряжение до стабилитрона было, предположим, 5в, то после него его значение будет не больше 4,5в. Если напряжение, на которое рассчитан стабилитрон, в несколько раз меньше напряжения на участке до него, то он будет сильно греться, не исключена и его порча (он сгорит). Стабилитроны изготовляются для стабилизации напряжений от 3 до сотен вольт, благодаря чему находят большое применение в радиотехнике для стабилизации напряжения. Во избежание порчи стабилитрона последовательно с ним включается ограничивающий ток резистор.

Варикап – специально сконструированный полупроводниковый диод, применяемый в качестве конденсатора переменной емкости. Значение емкости варикапа определяется емкостью р-п-перехода и изменяется при изменении приложенного к переходу (к диоду) напряжения. С электрической цепи с варикапом, появляются составляющие тока новых частот. Это явление используется в радиотехнике для умножения и деления частоты, для параметрического усиления. Варикап может также использоваться для настройки колебательного контура, для автоматической подстройки частоты и частотной модуляции.

Варистор – полупроводниковый прибор, сопротивление которого изменяется по нелинейному закону при изменении приложенного напряжения. К варисторам относятся большинство полупроводниковых, электронных и ионных приборов. Чаще всего варисторы применяются для защиты элементов электрических схем от перенапряжений и контактов реле от разрушения, а также в стабилизаторах амплитуды в качестве элементов, снижающих нелинейные искажения, в схемах преобразования частоты.

Оптрон – полупроводниковый прибор, содержащий источник и приёмник светового излучения, которые оптически и конструктивно связаны между собой. Элементами оптрона являются источник света и фотоприёмник, но существуют оптроны, состоящие из большого количества электросветовых и фотоэлектрических преобразователей. Оптрон представляет собой сочетание в одном корпусе электросветового преобразователя (лампочки накаливания, светодиода) с фотоэлектрическим (фоторезистором, фотодиодом). Такой оптрон позволяет, например, при полной электрической изоляции двух цепей осуществлять управление током в одной цепи путем изменения тока в другой (дистанционное включение, регулирование громкости, АРУ и т.п.). Наряду с элементарным оптроном создаются сложные конструкции, включающие в себя большое число электросветовых и фотоэлектрических преобразователей. Такие оптроны аналогичны интегральным микросхемам. Они позволяют выполнять логическую обработку большого числа сигналов, воспроизводить сложные функции усиления, генерации и преобразования электрических сигналов.

Тиристор – электропреобразовательный полупроводниковый прибор, содержащий три или более р-п-перехода. По числу внешних электродов тиристоры делятся на: двухэлектродные – динисторы и трехэлектродные – тринисторы. Те и другие представляют собой четырёхслойную структуру полупроводника с разного вида проводимостями. Крайние слои являются анодом и катодом, а третий электрод у тринисторов служит управляющим электродом. Поэтому динисторы являются переключающими диодами, а тринисторы – управляемыми. Если такой прибор включить в цепь переменного тока, то он открывается, пропуская ток в нагрузку лишь тогда, когда мгновенное значение напряжения достигает определенного уровня, либо при подаче отпирающего напряжения на специальный управляющий электрод. Маломощные тиристоры находят применение в импульсной технике. Выпускаются мощные тиристоры для применения в устройствах управления электроприводом и в мощных выпрямителях.

Фототиристор отличается от обычного тем, что в его корпусе имеется окно для облучения структуры световым потоком. Поэтому Фототиристор можно отпирать как воздействием светового потока, так и подачей на управляющий электрод электрического импульса управления. Уровень излучения, необходимый для запуска фототиристора, зависит от температуры и анодного напряжения. Для точного запуска фототиристора используют излучения лазеров и светодиодов. Применяются фототиристоры в тех областях, где необходима электрическая изоляция между управляющим сигналом силовой цепью.

Терморезистор – полупроводниковый прибор, электрическое сопротивление которого изменяется при изменении температуры. Основой терморезисторов являются поликристаллические полупроводниковые материалы с электронной проводимостью – окислы так называемых переходных металлов (от титана до цинка), а также сульфиды, карбиды и нитриды некоторых металлов.

Используются терморезисторы в качестве датчиков устройств противопожарной сигнализации, тепловой защиты, для стабилизации токов и температурной компенсации в транзисторной аппаратуре.

Полупроводниковый светодиод – это излучающий полупроводниковый прибор с одним или несколькими электрическими переходами, предназначенный для непосредственного преобразования электрической энергии в энергию некогерентного светового излучения. Конструкцией светодиода предусмотрена возможность вывода светового излучения из области перехода сквозь прозрачное стекло в корпусе.

Светодиоды используются как световые индикаторы, источники излучения в оптоэлектронных парах, при работе с кино- и фототехникой, в устройствах автоматики, вычислительной и измерительной технике.


Условные обозначения полупроводниковых приборов:


Литература

1). Виноградов Ю.В. "Основы электронной и полупроводниковой техники". Изд. 2-е, доп. М., "Энергия", 1972 г.

2). Журнал "Радио", номер 12, 1978 г.

3). Терещук Р.М. Полупроводниковые приемно-усилительные устройства: Справочник радиолюбителя / 4-е издание, стер. - Киев: Наук. Думка 1989.

4). Бочаров Л.Н. Полевые транзисторы. - М.: Радио и связь, 1984.

5). Полупроводниковые приборы: транзисторы: Справочник / Н.Н.Горюнова. М.; Энергоатомиздат, 1985.

6). Справочник " Полупроводниковые приборы: диоды, тиристоры, оптоэлектронные приборы"; М.: Энергоатомиздат, 1987г.

Во избежание повреждения полупроводниковых приборов при монтаже необходимо обеспечить неподвижность их выводов вбли­зи корпуса. Для этого следует изгибать выводы на расстоянии не менее 3...5 мм от корпуса и выполнять пайку низкотемператур­ным припоем ПОС-61 на расстоянии не менее 5 мм от корпуса прибора с обеспечением теплоотвода между корпусом и местом пайки. При расстоянии от места пайки до корпуса 8... 10 мм и более ее можно производить без дополнительного теплоотвода (в течение 2...3 с).

Перепайка в монтаже и замена отдельных деталей в схемах с полупроводниковыми приборами должна производиться при от­ключенном питании паяльником с заземленным жалом. При вклю­чении транзистора в схему, находящуюся под напряжением, не­обходимо сначала присоединить базу, затем эмиттер, а потом кол­лектор. Отключение транзистора от схемы без снятия напряжения выполняется в обратной последовательности.

Для обеспечения нормальной работы полупроводниковых при­боров на полной мощности необходимо использовать дополни­тельные теплоотводы. В качестве теплоотводов применяются реб­ристые радиаторы из красной меди или алюминия, которые на­деваются на приборы. При проектировании схем с широким тем­пературным диапазоном работы следует учитывать, что при повышении температуры снижается не только допустимая мощность рассеяния многих типов полупроводниковых приборов, но и до­пустимые напряжения и сила токов переходов.

Эксплуатация полупроводниковых приборов должна осуществ­ляться только в диапазоне требуемых рабочих температур, при этом относительная влажность должна быть до 98 % при темпера­туре 40 °С; атмосферное давление - от 6,7 10 2 до 3 10 5 Па; вибра­ция с ускорением до 7,5g в диапазоне частот 10...600 Гц; много­кратные удары с ускорением до 75g; линейные ускорения до 25g.

Увеличение или уменьшение указанных выше параметров от­рицательно влияет на работу полупроводниковых приборов. Так, изменение диапазона рабочих температур вызывает растрескива­ние кристаллов полупроводников и изменение электрических ха­рактеристик приборов. Кроме того, под действием высокой тем­пературы происходят высыхание и деформация защитных покры­тий, выделение газов и расплавление припоя. Высокая влажность способствует коррозии корпусов и выводов вследствие электро­лиза. Низкое давление вызывает уменьшение пробивного напря­жения и ухудшение теплопередачи. Изменение ускорения ударов и вибрации приводит к появлению механических напряжений и усталости в элементах конструкций, а также механических по­вреждений (вплоть до отрыва выводов) и др.

Для защиты от воздействия вибраций и ускорения конструкция с полупроводниковыми приборами должна иметь амортизацию, а для улучшения влагостойкости должна покрываться защитным лаком.

Министерство Науки и Образования

Реферат на тему:

Применение полупроводниковых приборов

Выполнил:

ученик 10-В класса

Средней Общеобразовательной

Школы №94

Гладков Евгений

Проверила:

Ольга Петровна

г. Харьков, 2004.


Полупроводниковые приборы – различные по конструкции, технологии изготовления и функциональному назначению электронные приборы, основанные на использовании свойств полупроводников. К полупроводниковым приборам относят также полупроводниковые микросхемы, которые представляют собой монолитные законченные функциональные узлы (усилитель, триггер, набор элементов), все компоненты которых изготавливаются в едином технологическом процессе.

Полупроводники – вещества, электронная проводимость которых имеет промежуточное значение между проводимостью проводников и диэлектриков. К полупроводникам относится обширная группа естественных и синтетических веществ различной химической природы, твердых и жидких, с разными механизмами проводимости. Наиболее перспективными полупроводниками в современной технике являются так называемые электронные полупроводники, проводимость которых обусловлена движением электронов. Однако в отличие от металлических проводников концентрация свободных электронов в полупроводниках очень мала и возрастает с повышением температуры, чем объясняется их пониженная проводимость и специфическая зависимость от удельного сопротивления и температуры: если у металлических проводников при нагревании электрическое сопротивление повышается, то у полупроводников оно понижается. Увеличение концентрации свободных электронов с повышением температуры объясняется тем, что с увеличением интенсивности тепловых колебаний атомов полупроводников все большее количество электронов срывается с внешних оболочек этих атомов и получает возможность перемещаться по объему полупроводника. В переносе электричества через полупроводники, помимо свободных электронов могут принимать участие места, освободившиеся от перешедших в свободное состояние электронов – так называемые дырки.

Поэтому и свободные электроны и дырки называют носителями электрического заряда, причём дырке приписывают положительный заряд, равный заряду электрона. В идеальном полупроводнике образование свободных электронов и дырок происходит одновременно, парами, а потому концентрации электронов и дырок одинаковы. Введение же в полупроводник определенных примесей способно привести к увеличению концентрации носителей одного знака и сильно повысить проводимость. Это происходит при условии, что на внешней оболочке атомов примеси находится на один электрон больше (донорные примеси) или на один электрон меньше (акцепторные примеси), чем у атомов исходного полупроводника. В первом случае примесные атомы (доноры) легко отдают лишний электрон, а во втором (акцепторы)– забирают недостающий электрон от атомов полупроводника, создавая дырку. Для наиболее распространённых полупроводников (кремния и германия), являющихся четырёхвалентными химическими элементами, донорами служат пятивалентные вещества (фосфор, мышьяк, сурьма), а акцепторами – трехвалентные (бор, алюминий, индий). В зависимости от преобладающего типа носителей примесные полупроводники делят на полупроводники электронного (п-типа) и дырочного (р-типа).

Зависимость электропроводимости полупроводника от различных внешних воздействий служит основой разнообразных технических приборов. Так, уменьшение сопротивления используется в термисторах, уменьшение сопротивления при освещении– в фоторезисторах. Появление ЭДС при прохождении тока через полупроводник, помещённый в магнитное поле (эффект Холла) применяется для измерения магнитных полей, мощности и т.д. Особенно ценными свойствами обладают неоднородные полупроводники (с изменяющейся от одной части объёма к другой проводимостью), а также контакты разных полупроводников между собой и полупроводников с металлами. Возникающие в таких системах эффекты наиболее ярко проявляются у электронно-дырочных переходов (р-п-переходом). Использование р-п-переходов лежит в основе действия многих полупроводниковых приборов: транзистора, полупроводникового диода, полупроводникового фотоэлемента, термоэлектрического генератора, солнечной батареи.

60-е – 70-е годы составляют эпоху полупроводниковой техники и собственно электроники. Электроника внедряется во все отрасли науки, техники и народного хозяйства. Являясь комплексом наук, электроника тесно связана с радиофизикой, радиолокацией, радионавигацией, радиоастрономией, радиометеорологией, радиоспектроскопией, электронной вычислительной и управляющей техникой, радиоуправлением на расстоянии, телеизмерениями, квантовой радиоэлектроникой.

В этот период продолжалось дальнейшее усовершенствование электровакуумных приборов. Большое внимание уделяется повышению их прочности, надёжности, долговечности. Разрабатывались пальчиковые и сверхминиатюрные лампы, что давало возможность снизить габариты установок, насчитывающих большое количество радиоламп.

Продолжались интенсивные работы в области физики твёрдого тела и теории полупроводников, разрабатывались способы получения монокристаллов полупроводников, методы их очистки и введения примесей. Большой вклад в развитие физики полупроводников внесла советская школа академика А.Ф.Иоффе.

Полупроводниковые приборы быстро и широко распространились за 50-е-70-е годы во все области народного хозяйства. В 1926 г. был предложен полупроводниковый выпрямитель переменного тока из закиси меди. Позднее появились выпрямители из селена и сернистой меди. Бурное развитие радиотехники (особенно радиолокации) в период второй мировой войны дало новый толчок к исследованиям в области полупроводников. Были разработаны точечные выпрямители переменных токов СВЧ на основе кремния и германия, а позднее появились плоскостные германиевые диоды. В 1948 г. американские учёные Бардин и Браттейн создали германиевый точечный триод (транзистор), пригодный для усиления и генерирования электрических колебаний. Позднее был разработан кремниевый точечный триод. В начале 70-х годов точечные транзисторы практически не применялись, а основным типом транзистора являлся плоскостной, впервые изготовленный в 1951 г. К концу 1952 г. были предложены плоскостной высокочастотный тетрод, полевой транзистор и другие типы полупроводниковых приборов. В 1953 г. был разработан дрейфовый транзистор. В эти годы широко разрабатывались и исследовались новые технологические процессы обработки полупроводниковых материалов, способы изготовления p-n- переходов и самих полупроводниковых приборов. В начале 70-х годов, кроме плоскостных и дрейфовых германиевых и кремниевых транзисторов, находили широкое распространение и другие приборы, использующие свойства полупроводниковых материалов: туннельные диоды, управляемые и неуправляемые четырёхслойные переключающие приборы, фотодиоды и фототранзисторы, варикапы, терморезисторы и т.д.

Развитие и совершенствование полупроводниковых приборов характеризуется повышением рабочих частот и увеличением допустимой мощности. Первые транзисторы обладали ограниченными возможностями (предельные рабочие частоты порядка сотни килогерц и мощности рассеяния порядка 100 - 200 МВт) и могли выполнять лишь некоторые функции электронных ламп. Для того же диапазона частот были созданы транзисторы с мощностью в десятки ватт. Позднее были созданы транзисторы, способные работать на частотах до 5 МГц и рассеивать мощность порядка 5 Вт, а уже в 1972 г. были созданы образцы транзисторов на рабочие частоты 20 - 70 МГц с мощностями рассеивания, достигающими 100 Вт и более. Маломощные же транзисторы (до 0,5 - 0,7 Вт) могут работать на частотах свыше 500 МГц. Позже появились транзисторы, работающие на частотах порядка 1000 МГц. Одновременно велись работы по расширению диапазона рабочих температур. Транзисторы, изготовленные на основе германия, имели первоначально рабочие температуры не выше +55 ¸ 70 °С, а на основе кремния - не выше +100 ¸ 120 °С. Созданные позже образцы транзисторов на арсениде галлия оказались работоспособными при температурах до +250 °С, и их рабочие частоты в итоге увеличились до 1000 МГц. Есть транзисторы на карбиде, работающие при температурах до 350 °С. Транзисторы и полупроводниковые диоды по многим показателям в 70-е годы превосходили электронные лампы и в итоге полностью вытеснили их из областей электроники. В интегральной электронике МДП-структуры широко используются для создания транзисторов и на их основе различных интегральных микросхем.

Перед проектировщиками сложных электронных систем, насчитывающих десятки тысяч активных и пассивных компонентов, стоят задачи уменьшения габаритов, веса, потребляемой мощности и стоимости электронных устройств, улучшения их рабочих характеристик и, что самое главное, достижения высокой надёжности работы. Эти задачи успешно решает микроэлектроника - направление электроники, охватывающее широкий комплекс проблем и методов, связанных с проектированием и изготовлением электронной аппаратуры в микроминиатюрном исполнении за счёт полного или частичного исключения дискретных компонентов.

Основной тенденцией микроминиатюризации является "интеграция" электронных схем, т.е. стремление к одновременному изготовлению большого количества элементов и узлов электронных схем, неразрывно связанных между собой. Поэтому из различных областей микроэлектроники наиболее эффективной оказалась интегральная микроэлектроника, которая является одним из главных направлений современной электронной техники. Сейчас широко используются сверхбольшие интегральные схемы, на них построено всё современное электронное оборудование, в частности ЭВМ и т.д.

Срок службы полупроводниковых триодов и их экономичность во много раз больше, чем у электронных ламп. За счёт чего транзисторы нашли широкое применение в микроэлектронике - теле-, видео-, аудио-, радиоаппаратуре и, конечно же, в компьютерах. Они заменяют электронные лампы во многих электрических цепях научной, промышленной и бытовой аппаратуры.

Во избежание повреждения полупроводниковых приборов при монтаже необходимо обеспечить неподвижность их выводов вбли­зи корпуса. Для этого следует изгибать выводы на расстоянии не менее 3...5 мм от корпуса и выполнять пайку низкотемператур­ным припоем ПОС-61 на расстоянии не менее 5 мм от корпуса прибора с обеспечением теплоотвода между корпусом и местом пайки. При расстоянии от места пайки до корпуса 8... 10 мм и более ее можно производить без дополнительного теплоотвода (в течение 2...3 с).

Перепайка в монтаже и замена отдельных деталей в схемах с полупроводниковыми приборами должна производиться при от­ключенном питании паяльником с заземленным жалом. При вклю­чении транзистора в схему, находящуюся под напряжением, не­обходимо сначала присоединить базу, затем эмиттер, а потом кол­лектор. Отключение транзистора от схемы без снятия напряжения выполняется в обратной последовательности.

Для обеспечения нормальной работы полупроводниковых при­боров на полной мощности необходимо использовать дополни­тельные теплоотводы. В качестве теплоотводов применяются реб­ристые радиаторы из красной меди или алюминия, которые на­деваются на приборы. При проектировании схем с широким тем­пературным диапазоном работы следует учитывать, что при повышении температуры снижается не только допустимая мощность рассеяния многих типов полупроводниковых приборов, но и до­пустимые напряжения и сила токов переходов.

Эксплуатация полупроводниковых приборов должна осуществ­ляться только в диапазоне требуемых рабочих температур, при этом относительная влажность должна быть до 98 % при темпера­туре 40 °С; атмосферное давление - от 6,7 10 2 до 3 10 5 Па; вибра­ция с ускорением до 7,5g в диапазоне частот 10...600 Гц; много­кратные удары с ускорением до 75g; линейные ускорения до 25g.

Увеличение или уменьшение указанных выше параметров от­рицательно влияет на работу полупроводниковых приборов. Так, изменение диапазона рабочих температур вызывает растрескива­ние кристаллов полупроводников и изменение электрических ха­рактеристик приборов. Кроме того, под действием высокой тем­пературы происходят высыхание и деформация защитных покры­тий, выделение газов и расплавление припоя. Высокая влажность способствует коррозии корпусов и выводов вследствие электро­лиза. Низкое давление вызывает уменьшение пробивного напря­жения и ухудшение теплопередачи. Изменение ускорения ударов и вибрации приводит к появлению механических напряжений и усталости в элементах конструкций, а также механических по­вреждений (вплоть до отрыва выводов) и др.