Точки в которых производная равна 0. Производная функции. Подробная теория с примерами. Производная логарифмической функции

Что такое производная?
Определение и смысл производной функции

Многие удивятся неожиданному расположению этой статьи в моём авторском курсе о производной функции одной переменной и её приложениях. Ведь как оно было ещё со школы: стандартный учебник в первую очередь даёт определение производной, её геометрический, механический смысл. Далее учащиеся находят производные функций по определению, и, собственно, только потом оттачивается техника дифференцирования с помощью таблицы производных .

Но с моей точки зрения, более прагматичен следующий подход: прежде всего, целесообразно ХОРОШО ПОНЯТЬ предел функции , и, в особенности, бесконечно малые величины . Дело в том, что определение производной базируется на понятии предела , которое слабо рассмотрено в школьном курсе. Именно поэтому значительная часть молодых потребителей гранита знаний плохо вникают в саму суть производной. Таким образом, если вы слабо ориентируетесь в дифференциальном исчислении либо мудрый мозг за долгие годы успешно избавился от оного багажа, пожалуйста, начните с пределов функций . Заодно освоите/вспомните их решение.

Тот же практический смысл подсказывает, что сначала выгодно научиться находить производные , в том числе производные сложных функций . Теория теорией, а дифференцировать, как говорится, хочется всегда. В этой связи лучше проработать перечисленные базовые уроки, а может и стать мастером дифференцирования , даже не осознавая сущности своих действий.

К материалам данной страницы рекомендую приступать после ознакомления со статьёй Простейшие задачи с производной , где, в частности рассмотрена задача о касательной к графику функции. Но можно и повременить. Дело в том, что многие приложения производной не требуют её понимания, и неудивительно, что теоретический урок появился достаточно поздно – когда мне потребовалось объяснять нахождение интервалов возрастания/убывания и экстремумов функции. Более того, он довольно долго находился в теме «Функции и графики », пока я всё-таки не решил поставить его раньше.

Поэтому, уважаемые чайники, не спешите поглощать суть производной, как голодные звери, ибо насыщение будет невкусным и неполным.

Понятие возрастания, убывания, максимума, минимума функции

Многие учебные пособия подводят к понятию производной с помощью каких-либо практических задач, и я тоже придумал интересный пример. Представьте, что нам предстоит путешествие в город, до которого можно добраться разными путями. Сразу откинем кривые петляющие дорожки, и будем рассматривать только прямые магистрали. Однако прямолинейные направления тоже бывают разными: до города можно добраться по ровному автобану. Или по холмистому шоссе – вверх-вниз, вверх-вниз. Другая дорога идёт только в гору, а ещё одна – всё время под уклон. Экстремалы выберут маршрут через ущелье с крутым обрывом и отвесным подъемом.

Но каковы бы ни были ваши предпочтения, желательно знать местность или, по меньшей мере, располагать её топографической картой. А если такая информация отсутствует? Ведь можно выбрать, например, ровный путь, да в результате наткнуться на горнолыжный спуск с весёлыми финнами. Не факт, что навигатор и даже спутниковый снимок дадут достоверные данные. Поэтому неплохо бы формализовать рельеф пути средствами математики.

Рассмотрим некоторую дорогу (вид сбоку):

На всякий случай напоминаю элементарный факт: путешествие происходит слева направо . Для простоты полагаем, что функция непрерывна на рассматриваемом участке.

Какие особенности у данного графика?

На интервалах функция возрастает , то есть каждое следующее её значение больше предыдущего. Грубо говоря, график идёт снизу вверх (забираемся на горку). А на интервале функция убывает – каждое следующее значение меньше предыдущего, и наш график идёт сверху вниз (спускаемся по склону).

Также обратим внимание на особые точки. В точке мы достигаем максимума , то есть существует такой участок пути, на котором значение будет самым большим (высоким). В точке же достигается минимум , и существует такая её окрестность, в которой значение самое маленькое (низкое).

Более строгую терминологию и определения рассмотрим на уроке об экстремумах функции , а пока изучим ещё одну важную особенность: на промежутках функция возрастает, но возрастает она с разной скоростью . И первое, что бросается в глаза – на интервале график взмывает вверх гораздо более круто , чем на интервале . Нельзя ли измерить крутизну дороги с помощью математического инструментария?

Скорость изменения функции

Идея состоит в следующем: возьмём некоторое значение (читается «дельта икс») , которое назовём приращением аргумента , и начнём его «примерять» к различным точкам нашего пути:

1) Посмотрим на самую левую точку: минуя расстояние , мы поднимаемся по склону на высоту (зелёная линия). Величина называется приращением функции , и в данном случае это приращение положительно (разность значений по оси – больше нуля). Составим отношение , которое и будет мерИлом крутизны нашей дороги. Очевидно, что – это вполне конкретное число, и, поскольку оба приращения положительны, то .

Внимание! Обозначение являются ЕДИНЫМ символом, то есть нельзя «отрывать» «дельту» от «икса» и рассматривать эти буквы отдельно. Разумеется, комментарий касается и символа приращения функции.

Исследуем природу полученной дроби содержательнее. Пусть изначально мы находимся на высоте 20 метров (в левой чёрной точке). Преодолев расстояние метров (левая красная линия), мы окажемся на высоте 60 метров. Тогда приращение функции составит метров (зелёная линия) и: . Таким образом, на каждом метре этого участка дороги высота увеличивается в среднем на 4 метра …не забыли альпинистское снаряжение? =) Иными словами, построенное отношение характеризует СРЕДНЮЮ СКОРОСТЬ ИЗМЕНЕНИЯ (в данном случае – роста) функции.

Примечание : числовые значения рассматриваемого примера соответствуют пропорциям чертежа лишь приблизительно.

2) Теперь пройдём то же самое расстояние от самой правой чёрной точки. Здесь подъём более пологий, поэтому приращение (малиновая линия) относительно невелико, и отношение по сравнению с предыдущим случаем будет весьма скромным. Условно говоря, метров и скорость роста функции составляет . То есть, здесь на каждый метр пути приходится в среднем пол метра подъёма.

3) Маленькое приключение на склоне горы. Посмотрим на верхнюю чёрную точку, расположенную на оси ординат. Предположим, что это отметка 50 метров. Снова преодолеваем расстояние , в результате чего оказываемся ниже – на уровне 30-ти метров. Поскольку осуществлено движение сверху вниз (в «противоход» направлению оси ), то итоговое приращение функции (высоты) будет отрицательным : метров (коричневый отрезок на чертеже). И в данном случае речь уже идёт о скорости убывания функции: , то есть за каждый метр пути этого участка высота убывает в среднем на 2 метра. Берегите одежду на пятой точке.

Теперь зададимся вопросом: какое значение «измерительного эталона» лучше всего использовать? Совершенно понятно, 10 метров – это весьма грубо. На них запросто уместится добрая дюжина кочек. Да что там кочки, внизу может быть глубокое ущелье, а через несколько метров – другая его сторона с дальнейшим отвесным подъёмом. Таким образом, при десятиметровом мы не получим вразумительной характеристики подобных участков пути посредством отношения .

Из проведённого рассуждения следует вывод – чем меньше значение , тем точнее мы опишем рельеф дороги. Более того, справедливы следующие факты:

Для любой точки подъемов можно подобрать значение (пусть и очень малое), которое умещается в границах того или иного подъёма. А это значит, что соответствующее приращение высоты будет гарантированно положительным, и неравенство корректно укажет рост функции в каждой точке этих интервалов.

– Аналогично, для любой точки склона существует значение , которое полностью уместится на этом склоне. Следовательно, соответствующее приращение высоты однозначно отрицательно, и неравенство корректно покажет убыль функции в каждой точке данного интервала.

– Особо интересен случай, когда скорость изменения функции равна нулю: . Во-первых, нулевое приращение высоты () – признак ровного пути. А во-вторых, есть другие любопытные ситуации, примеры которых вы видите на рисунке. Представьте, что судьба завела нас на самую вершину холма с парящими орлами или дно оврага с квакающими лягушками. Если сделать небольшой шажок в любую сторону, то изменение высоты будет ничтожно мало, и можно сказать, что скорость изменения функции фактически нулевая. В точках наблюдается именно такая картина.

Таким образом, мы подобрались к удивительной возможности идеально точно охарактеризовать скорость изменения функции. Ведь математический анализ позволяет устремить приращение аргумента к нулю: , то есть сделать его бесконечно малым .

По итогу возникает ещё один закономерный вопрос: можно ли для дороги и её графика найти другую функцию , которая сообщала бы нам обо всех ровных участках, подъёмах, спусках, вершинах, низинах, а также о скорости роста/убывания в каждой точке пути?

Что такое производная? Определение производной.
Геометрический смысл производной и дифференциала

Пожалуйста, прочитайте вдумчиво и не слишком быстро – материал прост и доступен каждому! Ничего страшного, если местами что-то покажется не очень понятным, к статье всегда можно вернуться позже. Скажу больше, теорию полезно проштудировать несколько раз, чтобы качественно уяснить все моменты (совет особенно актуален для студентов-«технарей», у которых высшая математика играет значительную роль в учебном процессе).

Естественно, и в самом определении производной в точке заменим на :

К чему мы пришли? А пришли мы к тому, что для функции по закону ставится в соответствие другая функция , которая называется производной функцией (или просто производной) .

Производная характеризует скорость изменения функции . Каким образом? Мысль идёт красной нитью с самого начала статьи. Рассмотрим некоторую точку области определения функции . Пусть функция дифференцируема в данной точке. Тогда:

1) Если , то функция возрастает в точке . И, очевидно, существует интервал (пусть даже очень малый), содержащий точку , на котором функция растёт, и её график идёт «снизу вверх».

2) Если , то функция убывает в точке . И существует интервал, содержащий точку , на котором функция убывает (график идёт «сверху вниз»).

3) Если , то бесконечно близко около точки функция сохраняет свою скорость постоянной. Так бывает, как отмечалось, у функции-константы и в критических точках функции , в частности в точках минимума и максимума .

Немного семантики. Что в широком смысле обозначает глагол «дифференцировать»? Дифференцировать – это значит выделить какой-либо признак. Дифференцируя функцию , мы «выделяем» скорость её изменения в виде производной функции . А что, кстати, понимается под словом «производная»? Функция произошла от функции .

Термины весьма удачно истолковывает механический смысл производной :
Рассмотрим закон изменения координаты тела , зависящий от времени , и функцию скорости движения данного тела . Функция характеризует скорость изменения координаты тела, поэтому является первой производной функции по времени: . Если бы в природе не существовало понятия «движение тела», то не существовало бы и производного понятия «скорость тела».

Ускорение тела – это скорость изменения скорости, поэтому: . Если бы в природе не существовало исходных понятий «движение тела» и «скорость движения тела», то не существовало бы и производного понятия «ускорение тела».

Непрерывность и дифференцируемость функции.

Теорема Дарбу. Интервалы монотонности.

Критические точки. Экстремум (минимум, максимум).

План исследования функции.

Связь между непрерывностью и дифференцируемостью функции. Если функция f (x ) дифференцируема в некоторой точке, то она непрерывна в этой точке. Обратное неверно: непрерывная функция может не иметь производной.

С л е д с т в и е. Если функция разрывна в некоторой точке, то она не имеет производной в этой точке.

Достаточные признаки монотонности функции.

Если f ’(x ) > 0 в каждой точке интервала (a, b ), то функция f (x ) возрастает на этом интервале.

Если f ’(x ) < 0 в каждой точке интервала (a, b ) , то функция f (x ) убывает на этом интервале.

Теорема Дарбу. Точки, в которых производная функции равна 0 или не существует, делят область определения функции на интервалы, внутри которых производная сохраняет знак.

Используя эти интервалы, можно найти интервалы монотонности функций, что очень важно при их исследовании.



Следовательно, функция возрастает на интервалах ( - , 0) и ( 1, + ) и убывает на интервале (0, 1 ). Точка x = 0 не входитвобластьопределенияфункции,нопомереприближения x к0 слагаемое x - 2 неограниченновозрастает, поэтому функция также неограниченно возрастает. В точке x = 1 значение функции равно 3. В соответствии с этим анализом мы можем пост роить график функции ( рис.4б ) .

Критические точки. Внутренние точки области определения функции, в которых производная равна нулю или не существует, называются критическими точками этой функции. Эти точки очень важны при анализе функции и построении её графика, потому что только в этих точках функция может иметь экстремум ( минимум или максимум , рис.5а ,б ).

В точках x 1 , x 2 (рис.5 a ) и x 3 (рис.5 b ) производная равна 0; в точках x 1 , x 2 (рис.5б ) производная не существует. Но все они точки экстремума.

Необходимое условие экстремума. Если x 0 - точка экстремума функции f (x ) и производная f’ существует в этой точке, то f’ (x 0)= 0.

Эта теорема - необходимое условие экстремума. Если производная функции в некоторой точке равна 0, то это не значит, что функция имеет экстремум в этой точке. Например, производная функции f (x ) = x 3 равна 0 при x = 0, но эта функция не имеет экстремум в этой точке (рис.6).

С другой стороны, функция y = | x | , представленная на рис.3, имеет минимум в точке x = 0 , но в этой точке производной не существует.

Достаточные условия экстремума.

Если производная при переходе через точку x 0 меняет свой знак с плюса на минус, то x 0 - точка максимума.

Если производная при переходе через точку x 0 меняет свой знак с минуса на плюс, то x 0 - точка минимума.

План исследования функции. Для построения графика функции нужно:

1) найти область определения и область значений функции,

2) установить, является ли функция чётной или нечётной,

3) определить, является ли функция периодической или нет,

4) найти нули функции и её значения при x = 0,

5) найти интервалы знакопостоянства,

6) найти интервалы монотонности,

7) найти точки экстремума и значения функции в этих точках,

8) проанализировать поведение функции вблизи “особых” точек

И при больших значениях модуля x .

П р и м е р. Исследуйте функцию f (x ) = x 3 + 2 x 2 - x - 2 и постройте график.

Р е ш е н и е. Исследуем функцию по вышеприведенной схеме.

1) областьопределения x R (x – любоедействительное число);

Область значений y R , так как f (x ) – многочлен нечётной

степени;

2) функция f (x ) не является ни чётной, ни нечётной

(поясните, пожалуйста);

3) f (x ) – непериодическая функция (докажите это сами);

4) график функции пересекается с осью Y в точке (0, – 2),

Так как f (0) = - 2 ; чтобы найти нули функции нужно

Решить уравнение: x 3 + 2 x 2 - x - 2 = 0, один из корней

Которого (x = 1) очевиден. Другие корни находятся

(если они есть! ) из решения квадратного уравнения:

x 2 + 3 x + 2 = 0, которое получено делением многочлена

x 3 + 2 x 2 - x - 2 на двучлен ( x – 1). Легко проверить,

Что два других корня: x 2 = - 2 и x 3 = - 1. Таким образом,

Нулями функции являются: - 2, - 1 и 1.

5) Это значит, что числовая ось делится этими корнями на

Четыре интервала знакопостоянства, внутри которых

Функция сохраняет свой знак:

Этот результат может быть получен разложением

многочлена на множители:

x 3 + 2 x 2 - x - 2 = (x + 2) (x + 1 (x – 1)

И оценкой знака произведения .

6) Производная f’ (x ) = 3 x 2 + 4 x - 1 не имеет точек, в которых

Она не существует, поэтому её область определения R (все

Действительные числа); нули f’ (x ) – это корни уравнения:

3 x 2 + 4 x - 1 = 0 .


Полученные результаты сведены в таблицу:

Задание B8 (ЕГЭ 2013)

На рисунке изображен график функции y=f(x), определенной на интервале от (-5;9). Найдите количество точек, в которых производная функции f(x) равна 0.

Решение

Первое, на что мы обращаем внимание - на рисунке дан график функции (а не производной функции). Далее, отмечаем, что производная функции f(x) равна 0 в точках максимума и минимума функции f(x), т.е. нам нужно найти количество экстремумов функции f(x) на заданном интервале. На языке графика это означает, что нам нужно посчитать количество "бугорков" функции, т.е.:

Получаем, что всего таких точек 9.

Задание B8 (ЕГЭ 2013)

На рисунке изображен график y=f(x) и касательная к нему в точке с абсциссой . Найдите значение производной функции f(x) в точке .

Решение

Значение производной функции f(x) в точке касания равно угловому коэффициенту касательной. Поэтому нам надо составить уравнение данной касательной и графику и найти угловой коэффициент. В общем случае, уравнение касательной имеет вид: y = kx+b. В этом уравнении k и есть тот самый угловой коэффициент, который мы будет искать.

На рисунке жирными точками отмечены точки, через которые проходит наша касательная. Координаты этих точек: (-4; -2) и (-2; 5). Так как данная прямая проходит через эти точки, то подставим их координаты в уравнение касательной и найдем значение коэффициента k.

2 = -4k+b (подставили точку с координатами (-4;-2));

5 = -2k+b (подставили точку с координатами (-2;5)).

Теперь вычитаем из первого уравнения второе:

2 - 5 = -4k-(-2k);

Получаем искомое значение k=3,5, что то же самое, что значение производной функции f(x) в точке .

Ответ: 3,5.

Задание B8 (ЕГЭ 2013)

На рисунке изображен график y = f"(x) производной функции f(x), определенной на интервале (-2;9). В какой точке отрезка функция f(x) принимает наименьшее значение?

Сергей Никифоров

Если производная функции знакопостоянна на интервале, а сама функция непрерывна на его границах, то граничные точки при­со­еди­ня­ют­ся как к про­ме­жут­кам воз­рас­та­ния, так и к про­ме­жут­кам убы­ва­ния, что полностью соответствует определению возрастающих и убывающих функций.

Фарит Ямаев 26.10.2016 18:50

Здравствуйте. Как же (на каком основании) можно утверждать, что в точке, где производная равна нулю, функция возрастает. Приведите доводы. Иначе, это просто чей-то каприз. По какой теореме? А также доказательство. Спасибо.

Служба поддержки

Значение производной в точке не имеет прямого отношения к возрастанию функции на промежутке. Рассмотрите, например, функции - все они возрастают на отрезке

Владлен Писарев 02.11.2016 22:21

Если функция возрастает на интервале (а;b) и определена и непрерывна в точках а и b, то она возрастает на отрезке . Т.е. точка x=2 входит в данный промежуток.

Хотя, как правило возрастание и убывание рассматривается не на отрезке, а на интервале.

Но в самой точке x=2, функция имеет локальный минимум. И как объяснять детям, что когда они ищут точки возрастания (убывания), то точки локального экстремума не считаем, а в промежутки возрастания (убывания) - входят.

Учитывая, что первая часть ЕГЭ для "средней группы детского сада", то наверное такие нюансы- перебор.

Отдельно, большое спасибо за "Решу ЕГЭ" всем сотрудникам- отличное пособие.

Сергей Никифоров

Простое объяснение можно получить, если отталкиваться от определения возрастающей/убывающей функции. Напомню, что звучит оно так: функция называется возрастающей/убывающей на промежутке, если большему аргументу функции соответствует большее/меньшее значение функции. Такое определение никак не использует понятие производной, поэтому вопросов о точках, где производная обращается в ноль возникнуть не может.

Ирина Ишмакова 20.11.2017 11:46

Добрый день. Здесь в комментариях я вижу убеждения, что границы включать нужно. Допустим, я с этим соглашусь. Но посмотрите, пожалуйста, ваше решение к задаче 7089. Там при указании промежутков возрастания границы не включаются. И это влияет на ответ. Т.е. решения заданий 6429 и 7089 противоречат друг другу. Проясните, пожалуйста, эту ситуацию.

Александр Иванов

В заданиях 6429 и 7089 совершенно разные вопросы.

В одном про промежутки возрастания, а в другом про промежутки с положительной производной.

Противоречия нет.

Экстремумы входят в промежутки возрастания и убывания, но точки, в которых производная равна нулю, не входят в промежутки, на которых производная положительна.

A Z 28.01.2019 19:09

Коллеги, есть понятие возрастания в точке

(см. Фихтенгольц например)

и ваше понимание возрастания в точке x=2 противочет классическому определению.

Возрастание и убывание это процесс и хотелось бы придерживаться этого принципа.

В любом интервале, который содержит точку x=2, функция не является возрастающей. Поэтому включение данный точки x=2 процесс особый.

Обычно, чтобы избежать путаницы о включении концов интервалов говорят отдельно.

Александр Иванов

Функция y=f(x) называется возрастающей на некотором промежутке, если бо́льшему значению аргумента из этого промежутка соответствует бо́льшее значение функции.

В точке х=2 функция дифференцируема, а на интервале (2; 6) производная положительна, значит, на промежутке }