Смежные и вертикальные углы. Перпендикулярные прямые. Что такое смежные углы? 3 смежные углы равны

Ука-жи-те но­ме­ра вер­ных утвер-жде-ний.

1) Любые три пря­мые имеют не более одной общей точки.

2) Если угол равен 120°, то смеж­ный с ним равен 120°.

3) Если рас­сто­я­ние от точки до пря­мой боль­ше 3, то и длина любой на-клон-ной, про-ведённой из дан­ной точки к пря-мой, боль­ше 3.

Если утвер­жде­ний не-сколь-ко, за­пи­ши­те их но-ме-ра в по­ряд­ке воз-рас-та-ния.

Ре-ше-ние.

Про-ве-рим каж-дое из утвер-жде-ний.

1) «Любые три пря-мые имеют не более одной общей точки» - верно . Если пря-мые имеют две и более общих точек, то они сов-па-да-ют. (См. ком-мен-та-рии к за-да-че.)

2) «Если угол равен 120°, то смеж-ный с ним равен 120°» - не-вер-но . Сумма смеж-ных углов равна 180°.

3) «Если рас-сто-я-ние от точки до пря-мой боль-ше 3, то и длина любой на-клон-ной, про-ведённой из дан-ной точки к пря-мой, боль-ше 3» - верно . Т. к. рас-сто-я-ние - длина крат-чай-ше-го от-рез-ка до пря-мой, а все на-клон-ные - длин-нее.

Ответ: 13.

Ответ: 13

· Прототип задания ·

Гость 19.02.2015 12:42

В школь­ном учебнике Ата­на­сяна Л. С. и др. "Геометрия 7--9", "Просвещение", 2014, глава 1, па­ра­граф 1 указано следующее.

1) Ак­си­о­ма планиметрии: через любые две точки можно про­ве­сти пря­мую и при­том толь­ко одну.

2) Положение, при­ня­тое в школь­ном курсе: говоря "две точки", "три точки", "две прямые" и т. д., будем считать, что эти точки, пря­мые различны.

Вывод, ко­то­рый дол­жен усво­ить ученик: две пря­мые либо имеют толь­ко одну общую точку, либо не имеют общих точек.

Поэтому ответ на 1-й во­прос должен быть "верно". Если все три прямые совпадают, то это одна прямая, а не три.

Петр Мурзин

Было бы правильно написать в условии "любые три различные пря­мые имеют не более одной общей точки", но это не так.

Гость 10.04.2015 16:38

Уважаемый редактор!

Согласен с замечанием Гостя от 19.02.2015 по существу утверждения п. 1 данной задачи: в упомянутом Учебнике «Геометрия 7-9» (п. 1 параграфа 1, примечание 1) сказано: «здесь и в дальнейшем, говоря «две точки», «три точки», «две прямые» и т. д., будем считать, что эти точки, прямые различны».

С учетом сказанного выше, рассуждения, приведённые на сайте в решении данной задачи (в части пункта 1) , являются ошибочными, так как формулировка задачи «три прямые» подразумевает, что эти три прямые различны (т.е. не могут совпадать!). Три прямые (различные, что подразумевается по умолчанию!): либо имеют одну общую точку (которая принадлежит каждой из этих трёх прямых) -- в случае, когда три прямые пересекаются в одной точке; либо не имеют общих точек.

Подтверждением данного вывода являет вывод п. 1 параграфа 1 упомянутого учебника: «две прямые либо имеют только одну общую точку, либо не имеют общих точек». Доказательство от противного: предположим, что три прямые имеют более одной общей точки; следовательно, две из этих прямых имеют, по крайней мере, более одной общей точки (так как для этих двух прямых общими точками будут являться те, что являются общими для всех трёх прямых); но это противоречит упомянутому выводу учебника о том, что две прямые либо имеют только одну общую точку, либо не имеют общих точек.

С уважением, гость.

Служба поддержки

Г Л А В А I.

ОСНОВНЫЕ ПОНЯТИЯ.

§11. СМЕЖНЫЕ И ВЕРТИКАЛЬНЫЕ УГЛЫ.

1. Смежные углы.

Если мы продолжим сторону какого-нибудь угла за его вершину, то получим два угла (черт. 72): / А ВС и / СВD, у которых одна сторона ВС общая, а две другие АВи ВD составляют прямую линию.

Два угла, у которых одна сторона общая, а две другие составляют прямую линию, называются смежными углами.

Смежные углы можно получить и таким образом: если из какой-нибудь точки прямой проведём луч (не лежащий на данной прямой), то получим смежные углы.
Например, / АDF и / FDВ - углы смежные (черт. 73).

Смежные углы могут иметь самые разнообразные положения (черт. 74).

Смежные углы в сумме составляют развёрнутый угол, поэтому сумма двух смежных углов равна 2d.

Отсюда прямой угол можно определить как угол, равный своему смежному углу.

Зная величину одного из смежных углов, мы можем найти величину другого смежного с ним угла.

Например, если один из смежных углов равен 3 / 5 d , то второй угол будет равен:

2d - 3 / 5 d = l 2 / 5 d .

2. Вертикальные углы.

Если мы продолжим стороны угла за его вершину, то получим вертикальные углы. На чертеже 75 углы EOF и АОС- вертикальные; углы АОЕ и СОF - также вертикальные.

Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого угла.

Пусть / 1 = 7 / 8 d (черт. 76). Смежный с ним / 2 будет равен 2d - 7 / 8 d , т. е. 1 1 / 8 d .

Таким же образом можно вычислить, чему равны / 3 и / 4.
/ 3 = 2d - 1 1 / 8 d = 7 / 8 d ; / 4 = 2d - 7 / 8 d = 1 1 / 8 d (черт. 77).

Мы видим, что / 1 = / 3 и / 2 = / 4.

Можно решить ещё несколько таких же задач, и каждый раз будет получаться один и тот же результат: вертикальные углы равны между собой.

Однако, чтобы убедиться в том, что вертикальные углы всегда равны между собой, недостаточно рассмотреть отдельные числовые примеры, так как выводы, сделанные на основе частных примеров, иногда могут быть и ошибочными.

Убедиться в справедливости свойства вертикальных углов необходимо путём рассуждения, путём доказательства.

Доказательство можно провести следующим образом (черт. 78):

/ a + / c = 2d ;
/ b + / c = 2d ;

(так как сумма смежных углов равна 2d ).

/ a + / c = / b + / c

(так как и левая часть этого равенства равна 2d , и правая его часть тоже равна 2d ).

В это равенство входит один и тот же угол с .

Если мы от равных величин отнимем поровну, то и останется поровну. В результате получится: / a = / b , т. е. вертикальные углы равны между собой.

При рассмотрении вопроса о вертикальных углах мы сначала объяснили, какие углы называются вертикальными, т. е. дали определение вертикальных углов.

Затем мы высказали суждение (утверждение) о равенстве вертикальных углов и в справедливости этого суждения убедились путём доказательства. Такие суждения, справедливость которых надо доказывать, называются теоремами . Таким образом, в данном параграфе мы дали определение вертикальных углов, а также высказали и доказали теорему об их свойстве.

В дальнейшем при изучении геометрии нам постоянно придётся встречаться с определениями и доказательствами теорем.

3. Сумма углов, имеющих общую вершину.

На чертеже 79 / 1, / 2, / 3 и / 4 расположены по одну сторону прямой и имеют общую вершину на этой прямой. В сумме эти углы составляют развёрнутый угол, т. е.
/ 1+ / 2+/ 3+ / 4 = 2d .

На чертеже 80 / 1, / 2, / 3, / 4 и / 5 имеют общую вершину. В сумме эти углы составляют полный угол, т. е. / 1 + / 2 + / 3 + / 4 + / 5 = 4d .

Упражнения.

1. Один из смежных углов равен 0,72 d. Вычислить угол, составленный биссектрисами этих смежных углов.

2. Доказать, что биссектрисы двух смежных углов образуют прямой угол.

3. Доказать, что если два угла равны, то равны и их смежные углы.

4. Сколько пар смежных углов на чертеже 81?

5. Может ли пара смежных углов состоять из двух острых углов? из двух тупых углов? из прямого и тупого угла? из прямого и острого угла?

6. Если один из смежных углов прямой, то что можно сказать о величине смежного с ним угла?

7. Если при пересечении двух прямых линий один угол прямой, то что можно сказать о величине остальных трёх углов?

Каждый угол, в зависимости от его величины, имеет своё название:

Вид угла Размер в градусах Пример
Острый Меньше 90°
Прямой Равен 90°.

На чертеже прямой угол, обычно обозначают символом , проведённым от одной стороны угла до другой.

Тупой Больше 90°, но меньше 180°
Развёрнутый Равен 180°

Развёрнутый угол равен сумме двух прямых углов, а прямой угол составляет половину развёрнутого угла.

Выпуклый Больше 180°, но меньше 360°
Полный Равен 360°

Два угла называются смежными , если у них одна сторона общая, а две другие стороны составляют прямую линию:

Углы MOP и PON смежные, так как луч OP - общая сторона, а две другие стороны - OM и ON составляют прямую.

Общая сторона смежных углов называется наклонной к прямой , на которой лежат две другие стороны, только в том случае, когда смежные углы не равны между собой. Если смежные углы равны, то их общая сторона будет перпендикуляром .

Сумма смежных углов равна 180°.

Два угла называются вертикальными , если стороны одного угла дополняют до прямых линий стороны другого угла:

Углы 1 и 3, а также углы 2 и 4 - вертикальные.

Вертикальные углы равны.

Докажем, что вертикальные углы равны:

Сумма ∠1 и ∠2 составляет развёрнутый угол. И сумма ∠3 и ∠2 составляет развёрнутый угол. Значит, эти две суммы равны:

∠1 + ∠2 = ∠3 + ∠2.

В этом равенстве слева и справа есть по одинаковому слагаемому - ∠2. Равенство не нарушится, если это слагаемое в левой и в правой части опустить. Тогда мы получаем.

Вопрос 1. Какие углы называются смежными?
Ответ. Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными полупрямыми.
На рисунке 31 углы (a 1 b) и (a 2 b) смежные. У них сторона b общая, а стороны a 1 и a 2 являются дополнительными полупрямыми.

Вопрос 2. Докажите, что сумма смежных углов равна 180°.
Ответ. Теорема 2.1. Сумма смежных углов равна 180°.
Доказательство. Пусть угол (a 1 b) и угол (a 2 b) - данные смежные углы (см. рис.31). Луч b проходит между сторонами a 1 и a 2 развёрнутого угла. Поэтому сумма углов (a 1 b) и (a 2 b) равна развёрнутому углу, т. е. 180°. Что и требовалось доказать.

Вопрос 3. Докажите, что если два угла равны, то смежные с ними углы также равны.
Ответ.

Из теоремы 2.1 следует, что если два угла равны, то смежные с ними углы равны.
Допустим, углы (a 1 b) и (c 1 d) равны. Нам нужно доказать, что углы (a 2 b) и (c 2 d) тоже равны.
Сумма смежных углов равна 180°. Из этого следует, что a 1 b + a 2 b = 180° и c 1 d + c 2 d = 180°. Отсюда, a 2 b = 180° - a 1 b и c 2 d = 180° - c 1 d. Так как углы (a 1 b) и (c 1 d) равны, то мы получаем, что a 2 b = 180° - a 1 b = c 2 d. По свойству транзитивности знака равенства следует, что a 2 b = c 2 d. Что и требовалось доказать.

Вопрос 4. Какой угол называется прямым (острым, тупым)?
Ответ. Угол, равный 90°, называется прямым углом.
Угол, меньший 90°, называется острым углом.
Угол, больший 90° и меньший 180°, называется тупым.

Вопрос 5. Докажите, что угол, смежный с прямым, есть прямой угол.
Ответ. Из теоремы о сумме смежных углов следует, что угол, смежный с прямым углом, есть прямой угол: x + 90° = 180°, x= 180° - 90°, x = 90°.

Вопрос 6. Какие углы называются вертикальными?
Ответ. Два угла называются вертикальными, если стороны одного угла являются дополнительными полупрямыми сторон другого.

Вопрос 7. Докажите, что вертикальные углы равны.
Ответ. Теорема 2.2. Вертикальные углы равны.
Доказательство.
Пусть (a 1 b 1) и (a 2 b 2)- данные вертикальные углы (рис. 34). Угол (a 1 b 2) является смежным с углом (a 1 b 1) и с углом (a 2 b 2). Отсюда по теореме о сумме смежных углов заключаем, что каждый из углов (a 1 b 1) и (a 2 b 2) дополняет угол (a 1 b 2) до 180°, т.е. углы (a 1 b 1) и (a 2 b 2) равны. Что и требовалось доказать.

Вопрос 8. Докажите, что если при пересечении двух прямых один из углов прямой, то остальные три угла тоже прямые.
Ответ. Предположим, что прямые AB и CD пересекают друг друга в точке O. Предположим, что угол AOD равен 90°. Так как сумма смежных углов равна 180°, то получаем, что AOC = 180°-AOD = 180°- 90°=90°. Угол COB вертикален углу AOD, поэтому они равны. То есть угол COB = 90°. Угол COA вертикален углу BOD, поэтому они равны. То есть угол BOD = 90°. Таким образом, все углы равны 90°, то есть они все – прямые. Что и требовалось доказать.

Вопрос 9. Какие прямые называются перпендикулярными? Какой знак используется для обозначения перпендикулярности прямых?
Ответ. Две прямые называются перпендикулярными, если они пересекаются под прямым углом.
Перпендикулярность прямых обозначается знаком \(\perp\). Запись \(a\perp b\) читается: «Прямая a перпендикулярна прямой b».

Вопрос 10. Докажите, что через любую точку прямой можно провести перпендикулярную ей прямую, и только одну.
Ответ. Теорема 2.3. Через каждую прямую можно провести перпендикулярную ей прямую, и только одну.
Доказательство. Пусть a - данная прямая и A - данная точка на ней. Обозначим через a 1 одну из полупрямых прямой a с начальной точкой A (рис. 38). Отложим от полупрямой a 1 угол (a 1 b 1), равный 90°. Тогда прямая, содержащая луч b 1 , будет перпендикулярна прямой a.

Допустим, что существует другая прямая, тоже проходящая через точку A и перпендикулярная прямой a. Обозначим через c 1 полупрямую этой прямой, лежащую в одной полуплоскости с лучом b 1 .
Углы (a 1 b 1) и (a 1 c 1), равные каждый 90°, отложены в одну полуплоскость от полупрямой a 1 . Но от полупрямой a 1 в данную полуплоскость можно отложить только один угол, равный 90°. Поэтому не быть другой прямой, проходящей через точку A и перпендикулярной прямой a. Теорема доказана.

Вопрос 11. Что такое перпендикуляр к прямой?
Ответ. Перпендикуляром к данной прямой называется отрезок прямой, перпендикулярной данной, который имеет одним из своих концов их точку пересечения. Этот конец отрезка называется основанием перпендикуляра.

Вопрос 12. Объясните, в чём состоит доказательство от противного.
Ответ. Способ доказательства, который мы применили в теореме 2.3, называется доказательством от противного. Этот способ доказательства состоит в том, что мы cначала делаем предположение, противоположное тому, что утверждается теоремой. Затем путем рассуждений, опираясь на аксиомы и доказанные теоремы, приходим к выводу, противоречащему либо условию теоремы, либо одной из аксиом, либо доказанной ранее теореме. На этом основании заключаем, что наше предположение было неверным, а значит, верно утверждение теоремы.

Вопрос 13. Что называется биссектрисой угла?
Ответ. Биссектрисой угла называется луч, который исходит из вершины угла, проходит между его сторонами и делит угол пополам.

В процессе изучения курса геометрии понятия “угол”, “вертикальные углы”, “смежные углы” встречаются достаточно часто. Понимание каждого из терминов поможет разобраться в поставленной задаче и правильно ее решить. Что такое смежные углы и как их определять?

Смежные углы – определение понятия

Термин “смежные углы” характеризует два угла, образованных общим лучом и двумя дополнительными полупрямыми, лежащими на одной прямой. Все три луча выходят из одной точки. Общая полупрямая является одновременно стороной как одного, так и второго угла.

Смежные углы – основные свойства

1. Исходя из формулировки смежных углов, нетрудно заметить, что сумма таких углов всегда образует развернутый угол, градусная мера которого равна 180°:

  • Если μ и η являются смежными углами, то μ + η = 180°.
  • Зная величину одного из смежных углов (например, μ), можно легко вычислить градусную меру второго угла (η), используя выражение η = 180° – μ.

2. Данное свойство углов позволяет сделать следующий вывод: угол, являющийся смежным прямому углу, также будет прямым.

3. Рассматривая тригонометрический функции (sin, cos, tg, ctg), основываясь на формулах приведения для смежных углов μ и η справедливо следующее:

  • sinη = sin(180° – μ) = sinμ,
  • cosη = cos(180° – μ) = -cosμ,
  • tgη = tg(180° – μ) = -tgμ,
  • ctgη = ctg(180° – μ) = -ctgμ.


Смежные углы – примеры

Пример 1

Задан треугольник с вершинами M, P, Q – ΔMPQ. Найти углы, смежные углам ∠QMP, ∠MPQ, ∠PQM.

  • Продлим каждую из сторон треугольника прямой.
  • Зная о том, что смежные углы дополняют друг друга до развернутого угла, выясняем, что:

смежным для угла ∠QMP будет ∠LMP,

смежным для угла ∠MPQ будет ∠SPQ,

смежным для угла ∠PQM будет ∠HQP.


Пример 2

Величина одного смежного угла составляет 35°. Чему равна градусная мера второго смежного угла?

  • Два смежных угла в сумме образуют 180°.
  • Если ∠μ = 35°, то смежный ему ∠η = 180° – 35° = 145°.

Пример 3

Определить величины смежных углов, если известно, что градусная мера одного из низ втрое больше градусной меры другого угла.

  • Обозначим величину одного (меньшего) угла через – ∠μ = λ.
  • Тогда, согласно условию задачи, величина второго угла будет равна ∠η = 3λ.
  • Исходя из основного свойства смежных углов, μ + η = 180° следует

λ + 3λ = μ + η = 180°,

λ = 180°/4 = 45°.

Значит первый один угол ∠μ = λ = 45°, а второй угол ∠η = 3λ = 135°.


Умение апеллировать терминологией, а также знание основных свойств смежных углов поможет справиться с решением многих геометрических задач.