Протачивание наружных канавок и отрезание. Канавочный резец Особенности токарной обработки с использованием канавочного резца

Узкие канавки обрабатывают прорезными резцами. Форма режущей кромки резца соответствует форме обрабатываемой канавки. Прорезные резцы бывают прямые и отогнутые, которые в свою очередь делятся на правые и левые. Чаще применяют прорезные резцы правые прямые и левые отогнутые. На рисунке справа: а) - прямой левый, б) - прямой правый, в) - отогнутый левый, г) - отогнутый правый

Жесткость детали не всегда позволяет прорезать канавки заданной ширины за один проход резца. Когда необходимо проточить в нежесткой детали канавку шире 5 мм, то это осуществляют за несколько проходов резца с поперечной подачей (рисунок справа). На торцах и по диаметру канавки оставляют припуск 0,5-1 мм для чистовой обработки, которую выполняют этим же резцом или канавочным резцом с размером режущей кромки, равным заданному размеру канавки.

Заготовки и детали отрезают отрезными резцами. Ширина режущей кромки отрезного резца зависит от диаметра отрезаемой заготовки и принимается равной 3; 4; 5; 6; 8 и 10 мм. Длина L головки отрезного резца должна быть несколько больше половины диаметра D прутка, от которого отрезают заготовку (L>0,5D). Отрезные резцы изготовляются цельными, а также с пластинами из быстрорежущей стали или твердого сплава. Для уменьшения трения между резцом и разрезаемым материалом головка резца сужается к стержню под углом 1-2 градуса (с каждой стороны резца), угол φ=0, задний угол α=12 градусов (рисунок внизу: г,ж). В отрезных резцах вспомогательный угол в плане должен быть меньше вспомогательного заднего угла. Неправильное соотношение величин этих углов может привести к повышенному трению задней вспомогательной поверхности резца об обработанную поверхность детали и, как следствие, к повышенному износу или поломке инструмента.

Отрезные резцы следует устанавливать под прямым углом к оси обрабатываемой заготовки рисунок б) Установка режущей кромки резца выше оси обрабатываемой заготовки (даже на 0,1-0,2 мм) может привести к его поломке, а при установке режущей кромки резца ниже оси заготовки на торце детали остается необработанный выступ. Расстояние о от торца приспособления для закрепления прутка до обработанного торца прутка должно быть минимальным и не превышать диаметра отрезаемого прутка рисунок а).

При отрезке хрупкого материала заготовка отламывается раньше, чем резец подойдет к центру заготовки, в результате чего на торце заготовки остается выступ (бобышка). Для получения ровного торца режущую кромку резца выполняют под углом 5-10 градусов рисунок д). После отрезки детали поперечная подача не выключается и производится срезание бобышки на заготовке. Можно отрезать деталь изогнутым отрезным резцом: "Гусем" рисунок в), при этом шпиндель должен вращаться по часовой стрелке. Для уменьшения шероховатости поверхности, полученной после отрезки, на задних вспомогательных поверхностях резца делают фаски шириной 1-2 мм. Поперечная подача при обработке канавок - 0,05-0,3 мм/об (для стальных деталей диаметром до 100 мм). Скорость резания при обработке канавок и при отрезке заготовок 25-30 м/мин (для резцов из быстрорежущих сталей) и 125-150 м/мин (для твердосплавных резцов).

Контроль наружных уступов, торцов и канавок.

Глубину канавок на наружной поверхности детали измеряют линейкой, рисунок справа а), штангенциркулем, рисунок справа б), штангенглубиномером, рисунок справа в) и уступомером, рисунок справа г). Ширина обработанного участка до уступа измеряется линейкой в том случае, если не требуется большой точности измерения. При более высоких требованиях к точности измерения лучше пользоваться штангенциркулем, а при серийном производстве деталей - шаблоном-уступомёром. Проходная сторона шаблона (ПР) - при измерении должна упираться в обработанную цилиндрическую поверхность детали, а непроходная сторона (НЕ) - в наружную цилиндрическую поверхность детали.

Резцы для прорезания наружных канавок . Прорезной резец показан на рис. 114. Наиболее важным размером этого резца является ширина его, которая выбирается в зависимости от принятого способа обработки канавки.

Если прорезание канавки производится одним проходом резца, то ширина его берется равной ширине канавки. Когда обработка канавки осуществляется двумя проходами резца, ширина его принимается несколько больше половины ширины канавки и т. д.

Длина рабочей части резца должна быть несколько больше (на 2-3 мм) глубины канавки. Задний угол прорезных резцов делается равным 12°; вспомогательные задние углы принимаются равными около 2°; передний угол выбирается как и для проходных резцов в зависимости от материала резца и материала обрабатываемой детали. Вспомогательные углы в плане делаются от 1 до 2°. Чем глубже прорезаемая канавка, тем больше должны быть эти углы.

Рис. 114. Прорезной резец для наружных канавок

Приемы прорезания канавок . Прорезание канавок производится одним или несколькими проходами резца.

Возможность прорезания широкой канавки одним проходом ограничивается вибрацией детали. Поэтому этот способ применяется при прорезании канавок шириной до 5 мм в нежестких (тонких и длинных) деталях. В более жестких деталях (коротких и больших диаметров) могут быть прорезаны одним проходом резца канавки шириной до 10 мм, а в очень жестких - шириной даже до 20 мм. Установка резца для прорезания канавки, расположенной на расстоянии от торца детали, посредством линейки показана на рис. 115, а.

Рис. 115. Прорезание канавок одним (а) и несколькими (б) проходами резца

При неточных (по ширине и положению) широких канавках резец при первом проходе следует устанавливать так, как показано на рис. 115, а, т. е. так, чтобы расстояние от правой стенки канавки до торца детали получилось сразу. Глубина канавки, полученная после первого прохода резца, должна быть меньше требуемой на 0,5-1 мм. Такой же припуск на чистовую обработку дна канавки надо оставлять и при всех последующих поперечных проходах резца.

При последнем проходе резца установка его относительно торца детали (расстояние L 2) проверяется посредством линейки, как показано на рис. 115, б. При этом проходе резца он подается вперед настолько, чтобы глубина канавки получилась равной требуемой. Прекратив поперечную подачу резца и переместив его продольной подачей слева направо, следует обработать начисто дно канавки.

При прорезании несколькими проходами точных (по ширине и по положению) канавок надо оставлять при первом проходе резца (рис. 115, а) на правой стенке канавок припуск 0,5-1,0 мм на чистовую обработку. Такой же припуск должен быть оставлен и на левой стенке канавки. Чистовая обработка этих стенок производится канавочным резцом поперечной подачей (к центру детали), причем первой обрабатывается та стенка, до которой задан размер, определяющий положение канавки. Так, например, при прорезании канавки (рис. 116, а) необходимо выдержать размер L 1 . Поэтому левая стенка этой канавки обрабатывается первой, причем измеряется (например, линейкой) размер L 1 . Если бы положение канавки определялось размером L 2 (рис. 116, б), то сначала следовало бы обрабатывать правую стенку, измеряя размер L 2 , например шаблоном.

Рис. 116. Измерения при проверке положения канавки

Чистовую обработку стенки канавки производят иногда подрезными резцами (правым и левым), применяя те же приемы, как и при подрезании уступов.

В некоторых случаях чистовую обработку стенок канавки осуществляют прорезным резцом, ширина которого равна ширине канавки. В этом случае важно лишь обеспечить такую установку резца, при которой положение канавки будет правильным.

Чистовая обработка дна точных (по ширине) канавок производится так же, как это выше было указано для обработки дна грубых канавок.

Режимы резания при прорезании канавок . Подача при прорезании канавок обычно ручная. Поперечная подача должна быть небольшой - от 0,05 мм/об при ширине резца 2 мм и до 0,20 мм/об, если ширина резца близка к 10 мм.

Скорости резания при прорезании канавок должны быть небольшими.

Канавочные резцы (называемые также прорезными) благодаря особенностям их конструкции относят к многофункциональным инструментам, с помощью которых можно формировать канавки на заготовках цилиндрической и конической конфигурации. Такие технологические операции (в особенности связанные с радиальной проточкой) характеризуются значительными нагрузками, которые успешно переносит резец данного типа, отличающийся высокой жесткостью конструкции. Более того, резцы канавочного типа с успехом используются для выполнения осевой проточки и подрезки торцов, что делает их универсальными токарными инструментами.

Канавочные резцы для внутренних и наружных канавок с механическим креплением сменных режущих пластин

Целесообразно использовать канавочные для получения детали сложной конфигурации. Универсальность резцов данного типа в таких случаях позволяет минимизировать количество используемых инструментов и сократить время на переналадку оборудования. Примечательно и то, что применение канавочного резца при выполнении многих технологических операций позволяет формировать поверхности с более высокими качественными характеристиками, чем при использовании обычного токарного инструмента.

Особенно удачным является использование канавочного резца при создании на поверхности заготовок широких канавок. При выполнении данной технологической операции такой инструмент демонстрирует исключительную стойкость, износ его режущей пластины происходит равномерно даже при выполнении большого количества проходов. Что также важно, при использовании канавочного резца хорошо контролируется процесс стружкоотделения.

Требования к резцам канавочного типа, которые выпускаются в большом разнообразии типоразмеров, оговариваются положениями ГОСТа 18874-73.

ГОСТ 18885-73 и 18874-73, касающиеся канавочных резцов

С содержанием ГОСТ 18874-73 «Резцы токарные прорезные и отрезные из » и ГОСТ 18885-73 «Резцы токарные резьбовые с пластинами из твердого сплава» можно ознакомиться ниже:
ГОСТ 18874-7



ГОСТ 18885-73




Виды канавочных резцов

Среди токарных инструментов для формирования канавок выделяют резцы для внутренней и наружной обработки. И первые, и вторые могут быть полностью изготовленными из твердосплавных материалов либо иметь сменную режущую часть. Твердосплавные резцы – достаточно дорогостоящий инструмент, поэтому его использование должно быть экономически целесообразным. При выполнении наружных работ обычно используют изделия со сменными пластинами, применять твердосплавные канавочные резцы в таких случаях не имеет смысла.

Совсем иначе обстоит ситуация с обработкой внутренних канавок. Здесь надо учитывать диаметр отверстия, в которое предстоит завести резец, а также жесткость инструмента. Требованиям, по которым резец обладает минимальным размером своей державки и достаточной жесткостью для выполнения обработки металла, удовлетворяют только твердосплавные канавочные инструменты.

Естественно, когда условия обработки и геометрические параметры обрабатываемой детали позволяют, для формирования наружных и внутренних канавок целесообразнее использовать недорогой инструмент со сменными пластинами.

Геометрия и размеры резцов канавочного типа

Поскольку резцы канавочного типа испытывают значительную нагрузку в процессе выполнения обработки, что определяет повышенные требования к их жесткости, их изготавливают с напаиваемыми твердосплавными пластинами, характеристики которых оговариваются в ГОСТе 2209-82. Требования же к самому резцу, как сказано выше, приведены в ГОСТе 18874-73.

Основная особенность геометрии резцов канавочного типа состоит в том, что форма их режущей части должна точно соответствовать форме канавки, которую планируется получить с их помощью. Канавки, создаваемые на поверхности заготовки, как правило, имеют небольшую ширину. Соответственно, режущая часть инструмента, с помощью которого их формируют, тоже достаточно узкая, что делает ее очень уязвимой к механическим повреждениям. Кроме того, рабочая головка с каждой боковой стороны имеет сужение по направлению к державке (на 1–2 градуса). Такое сужение боковых сторон режущей части необходимо для того, чтобы уменьшить их трение о стенки формируемой канавки.

Чтобы повысить прочность режущей головки канавочного токарного инструмента, ее высоту делают значительно больше, чем ширину. Для этого также необходимы небольшой передний угол и заточка режущей кромки с небольшим радиусом (криволинейная). Оптимальными величинами углов резания для резцов канавочного типа являются 15–25 0 (передний), 8–12 0 (задний).

Ширину рабочей части канавочного инструмента, которая, согласно требованиям ГОСТа 18874-73, может варьироваться в широком диапазоне, выбирают в зависимости от того, какой ширины канавку необходимо сформировать на наружной или внутренней поверхности обрабатываемой заготовки.

Правила выбора

Первое, на что следует ориентироваться при выборе канавочного токарного инструмента, – это чертеж готового изделия, на котором указаны как размеры и форма канавок, так и допуски на точность их геометрических параметров. Естественно, оказывает влияние на выбор резца и его геометрических параметров материал, из которого выполнена заготовка.

При формировании канавок на деталях небольшого размера особенно важно выдерживать небольшую силу резания, что позволяет минимизировать деформации, возникающие в процессе обработки. Обеспечивает соблюдение этого требования острая заточка канавочного инструмента, которая, тем не менее, может привести к его поломке, если неправильно подобран материал твердосплавной пластины и режимы резания – скорость вращения заготовки и величина подачи.

При выборе канавочного резца также следует учитывать форму его режущей кромки, которая может быть прямолинейной и заточенной с небольшим радиусом. Естественно, не следует выбирать изделие с криволинейной заточкой режущей кромки, если дно канавки, согласно предоставленному чертежу, должно быть прямым.

Особенности токарной обработки с использованием канавочного резца

Режимы резания при использовании резцов канавочного типа имеют некоторые отличия от режимов обработки заготовки токарными инструментами других типов. Так, за глубину резания принимается величина, равная ширине формируемой канавки, а подачу инструмента за один оборот детали измеряют в направлении, перпендикулярном ее оси. Величину подачи в зависимости от материала, из которого изготовлена режущая часть канавочного инструмента, выбирают в пределах 0,07–0,2 мм/об, а скорость резания – 15–180 м/мин.

На поверхности заготовки можно получать канавки нескольких видов.

  • Узкие канавки, ширина которых соответствует ширине режущей части инструмента, выполняются за один проход резца, который подается вручную. Перед этим на поверхности детали определяют точное место расположения канавки, а затем выставляют напротив этого места резец и осуществляют его подачу.
  • Канавки на уступах и торцах детали выполняются по такому же принципу, их диаметр выставляют при помощи лимба поперечной подачи, а глубину – по лимбу продольного перемещения суппорта.
  • Широкие канавки делают за несколько проходов по следующей схеме. Сначала определяют место расположения правого края канавки и выставляют напротив данного места резец. При помощи поперечной подачи резец врезают в деталь на глубину, которая на 0,5 мм меньше глубины нарезаемой канавки (такой припуск оставляют на чистовую обработку). Затем при помощи продольной подачи канавочный инструмент начинают перемещать к левому краю нарезаемой канавки, граница которого предварительно намечена. После того как черновая канавка сформирована, ее дно обрабатывают начисто – на требуемую глубину, осуществляя продольную подачу резца слева направо. В том случае, если необходимо сформировать канавку с очень точным расположением ее левого и правого краев, при черновой обработке на них также могут быть оставлены припуски, которые затем снимаются при помощи поперечной подачи канавочного или подрезного резца.

Резцы для вытачивания канавок . У резцов, предназначенных для вытачивания канавок, форма режущей кромки должна точно воспроизводить профиль канавки. Резцы для вытачивания канавок называют прорезными .

Так как ширина канавок обычно небольшая, то и режущую кромку прорезного резца делают узкой (рис. 147), что создает опасность его поломки. Эта опасность увеличивается еще тем, что головку резца суживают по направлению к стержню на 1-2° с каждой стороны (рис. 148) для уменьшения трения боковых поверхностей о стенки канавки. Для повышения прочности прорезных резцов высоту их головок делают в несколько раз больше ширины режущей кромки. С этой же целью головке придают небольшой передний угол или делают радиусную (криволинейную) заточку.

Отрезные резцы . Для отрезания применяют резцы подобные прорезным, но с более длинной головкой (рис. 149). Чтобы сократить потери материала при отрезании, изготовляют отрезные резцы с возможно узкой режущей кромкой. Длина головки резца должна быть немного больше половины диаметра отрезаемого прутка или заготовки.

Прорезные и отрезные резцы изготовляют обычно составными (см. рис. 149): державка 2 делается из углеродистой стали, пластинка 1, приваренная или припаянная к державке, - из быстрорежущей стали или твердого сплава.

Отрезные резцы новаторов производства . Токари-скоростники успешно применяют отрезные резцы, оснащенные пластинками твердого сплава. На рис. 150 показан твердосплавный отрезной резец конструкции токаря-новатора т. Мехонцева. Резец имеет на передней поверхности выкружку, облегчающую сход стружки: упираясь в уступ, стружка обламывается отдельными полукольцами и вылетает из канавки.

Техник Д. Рыжков разработал токарный отрезной резец с механическим креплением пластинки твердого сплава (рис. 151) для разрезания деталей диаметром до 80 мм.

Корпус резца состоит из призматической державки 4 и узкой головки 5. В головке профрезерован паз, благодаря которому ее верхняя часть пружинит и при завертывании винта 3 прижимает пластинку твердого сплава 1. В головке устанавливается также твердосплавная пластинка 2, служащая для завивания и ломания стружки. Для предохранения пластинки 1 от сдвига в ее нижней поверхности имеются рифления. Такие же рифления имеются в корпусе головки.

Токарь-новатор завода «Красное Сормово» В. Годяев предложил улучшенную конструкцию отрезного твердосплавного резца (рис. 152). В этом резце пластинка твердого сплава получает путем шлифования клиновую форму с углом 60°. Такую же клиновую форму придают путем фрезерования пазу державки. Угловая форма пластинки и паза увеличивает площадь припайки пластинки в 1,5 раза и способствует созданию прочного крепления, препятствующего смещению пластинки под действием боковых сил. Это позволяет вести обработку с более высокими режимами резания. Скорость резания при отрезании достигает 100 м/мин и подача 0,4-0,5 мм/об.

Установка прорезных и отрезных резцов. При отрезании или прорезании глубоких канавок особое внимание надо обращать на точную установку и хорошее закрепление резца в резцедержателе, так как небольшая ошибка при установке (перекос резца) вызывает трение стенок канавок о боковую поверхность резца. В этом случае неизбежен брак и поломка резца.

Для проверки правильности установки резца пользуются уже обработанной цилиндрической частью детали, а при отрезании от заготовки устанавливают в центрах точно обработанный валик. Затем прикладывают угольник с обеих сторон резца. При этом с обеих сторон и по всей длине головки резца должен быть ясно виден угловой зазор не менее 1° (см. рис. 148).

Резцы для вытачивания канавок, а также отрезные резцы нужно устанавливать строго по высоте центров станка; это особенно важно при работе отрезными резцами. Расположение их выше или ниже оси центров может легко привести к поломке резцов.

2. Приемы вытачивания канавок и отрезания

Вытачивание узких канавок. Для вытачивания канавок устанавливают детали в патронах или центрах или же в патроне с поддержкой задним центром.

Место, в котором следует выточить канавку или отрезать деталь, определяется при помощи измерительной линейки. Узкие канавки вытачиваются за один проход резца.

Вытачивание широких канавок. Широкие канавки вытачиваются за несколько проходов. Порядок вытачивания широких канавок следующий:
1. Вначале намечают посредством линейки или шаблона границу правой стенки канавки и подводят резцедержатель с резцом (рис. 153, а). Установив правильно резец, ему дают поперечное перемещение на глубину канавки минус 0,5 мм на чистовой проход.
2. Затем, передвигая резец влево, как показано на рис. 153, б, расширяют канавку, при этом перед последним проходом (рис. 153, в) намечают с помощью линейки границу левой стенки канавки.
3. Окончательный проход резца показан на рис. 153, е: сначала резец подается по лимбу винта поперечной подачи на полную глубину канавки, а затем резцу дают продольное перемещение слева направо и обрабатывают канавку начисто.

Отрезание. При отрезании пруток вставляют в отверстие шпинделя и закрепляют в патроне так, чтобы длина а, остающаяся после отрезания, не превышала диаметра прутка (рис. 154). При отрезании нельзя допускать дрожания резца или детали, так как в этом случае резец может сломаться.

Деталь, установленную в центрах или в патроне с поддержкой ее конца задним центром, нельзя разрезать до конца, если отрезаемый конец не установлен в люнете. В противном случае в месте прореза может образоваться очень тонкий стержень, который под действием давления резца и веса отрезаемой части сломается, резец окажется защемленным и неизбежно произойдет его поломка.

Если режущую кромку отрезного резца заточить параллельно оси центров, то отрезаемая деталь может сломаться в тот момент, когда резец не дошел еще до центра. При этом на отрезанной части останется выступ (в виде бобышечки), который затем необходимо будет срезать. Если же для отрезания использовать отрезной резец, у которого правый угол режущей кромки идет впереди левого (рис. 155), то прорезание будет происходить до самого центра.

Бобышечка, оставшаяся на правой части заготовки, срезается подрезным резцом при последующей обработке.

При отрезании деталей большого диаметра требуется резец с длинной головкой. Чтобы уменьшить дрожание, рекомендуется: 1) производить отрезание при обратном вращении шпинделя, применяя изогнутый отрезной резец, который устанавливается режущей кромкой вниз (рис. 156); 2) производить подтяжку клиньев суппорта и затяжку винта зажима суппорта от продольного смещения; 3) увеличивать подачу до предельно допустимых значений; 4) применять обильное охлаждение.

3. Режимы резания при вытачивании канавок и отрезании

При вытачивании канавок и отрезании за глубину резания t принимают ширину прореза (см. рис. 148), а подачей s считают величину перемещения резца перпендикулярно к оси детали за один ее оборот.

Ввиду малой жесткости резца и плохих условий для отвода тепла при вытачивании канавок и отрезании применяют следующие подачи и скорости резания:

при работе быстрорежущими резцами по стали средней твердости величину подачи берут от 0,07 до 0,2 мм/об, а скорость резания - в пределах 15-30 м/мин;

при работе твердосплавными резцами по стали средней твердости величину подачи берут от 0,07 до 0,1 мм/об, а скорость резания - 150-180 м/мин. Таким образом, производительность твердосплавных прорезных и отрезных резцов в 5-6 раз выше по сравнению с резцами из быстрорежущей стали.

4. Измерение канавок

Вытачивание канавок производят с поперечной подачей, пользуясь лимбом винта поперечной подачи.

Диаметр выточенной канавки измеряют штангенциркулем (рис. 157), конечно, если канавка шире ножек штангенциркуля. Часто измеряют не диаметр канавки, а ее глубину, пользуясь для этого измерительной линейкой, шаблоном (рис. 158), штангенциркулем или штангенглубиномером.

Ширину канавки измеряют линейкой, штангенциркулем, шаблоном, калибром.

5. Брак при вытачивании канавок и отрезании и меры его предупреждения

При вытачивании канавок и отрезании возможны следующие виды брака:
1) неверное расположение канавки по длине детали;
2) неправильная ширина канавки (больше или меньше требуемой);
3) неправильная глубина канавки (больше или меньше требуемой);
4) неправильная длина отрезанной детали;
5) недостаточная чистота поверхности канавки или торца отрезанной детали.

1. Брак первого вида получается при неправильной разметке места под канавку или неверной установке резца и является результатом невнимательности токаря. Брак является неисправимым. Предупредить брак можно внимательной разметкой рисок под канавки, проверкой нанесенных рисок и правильной установкой резца по длине детали.

2. Ширина канавки получается больше или меньше требуемой, если ширина резца выбрана неверно. Брак неисправим, когда ширина канавки получилась больше требуемой; при ширине канавки меньше требуемой исправление возможно дополнительным вытачиванием.

3. Глубина канавки больше требуемой получается при неправильной длине прохода резца. Брак неисправим.

4. Неправильная длина отрезанной детали получается при невнимательной работе рабочего. Брак неисправим, если длина отрезанной детали получилась меньше требуемой.

5. Недостаточная чистота поверхности канавки, а также торца отрезанной детали получается по причинам, указанным выше (стр. 158) для такого же вида брака. Кроме того, причиной может являться неверная установка резца, касающегося боковым краем уже обработанной поверхности.

Контрольные вопросы 1. В чем заключаются особенности конструкции резцов для вытачивания канавок?
2. Для чего головка прорезного резца суживается по направлению к стержню?
3. Чем отличаются отрезные резцы от прорезных?
4. Как устанавливают отрезные и прорезные резцы?
5. Как устроен отрезной резец для отрезания при обратном вращении шпинделя (см. рис. 156)?
6. Как и чем измеряют расположение вытачиваемых канавок на детали?
7. Как проверяют ширину и глубину вытачиваемой канавки?
8. Укажите основные виды и причины брака при вытачивании канавок и отрезании.

Подробности Категория: Конструирование механически обрабатываемых деталей Просмотров: 4228

Обработка напроход не всегда осуществима по конструктивным условиям. В таких случаях необходимо предусмотреть перебег режущего инструмента относительно обрабатываемой поверхности на расстояние, достаточное для получения заданной шероховатости и точности.

При точной обработке ступенчатых цилиндрических поверхностей выход инструмента обеспечивают введением на участках сопряжения канавок глубиной несколько десятых миллиметра.

Если точной обработке подвергается только цилиндрическая поверхность, то применяют цилиндрические выточки (рис. 508, а). При точной обработке торцовых поверхностей вводят торцовые выточки (вид б). При одновременной точной обработке цилиндра и примыкающего к нему торца проделывают диагональные канавки (вид в). Формы канавок для выхода шлифовального круга приведены на видах г (шлифование по цилиндру), д (шлифование по торцу) и е (шлифование по цилиндру и торцу).

Размеры канавок в зависимости от диаметра d 0 цилиндра указаны ниже (мм):

На рис. 509 приведены формы сопряжения поверхностей типовых машиностроительных деталей.

Участки ступенчатого вала (вид 1), близкие к сопряжению цилиндрической поверхности с торцом заплечика, невозможно чисто обработать. Целесообразно ввести на участке сопряжения канавку для выходи инструмента (вид 2). Этот способ не рекомендуется для высоконагруженных деталей, так как выточки являются концентраторами напряжений. В таких случаях следует выполнять сопряжение с галтелью (вид 3), обрабатываемой при точении гантельным резцом, а при шлифовании — галтельным шлифовальным кругом.

Для получения точных внутренних поверхностей (вид 4) необходимо вводить поднутряющие канавки (вид 5) или лучше обеспечивать обработку напроход (вид 6).

Конструкции с выводом резьбы на ступенчатый торец (виды 7, 13) практически невыполнимы. Резьбу следует заканчивать на расстоянии l≥4Р от торца (виды 8, 14), где Р — шаг резьбы, или отделять от смежных поверхностей канавкой (виды 9, 15) диаметром для наружных резьб d 1 ≤d-1,5Р, для внутренних резьб d 2 >d+0,25Р, где d — номинальный диаметр резьбы, мм.

Ширину канавок при нарезании наружной резьбы резцами и лерками делают в среднем b = 2Р; при нарезании внутренних резьб резцами h = ЗР. То же правило целесообразно соблюдать для гладких валов (виды 10, 11) и отверстий (16, 17).

Еще лучше смежные с резьбой поверхности располагать ниже (виды 12, 18), обеспечивая обработку напроход. Диаметры d 1 , d 2 таких поверхностей определяют из приведенных ранее соотношений.

Для обработки продольных пазов в отверстиях необходимо обеспечить выход долбяка, например, в поперечное сверление (вид 20) или в кольцевую канавку (вид 20) радиусом

где h — расстояние днища паза от центра; с — ширина паза). Наиболее целесообразно, чтобы смежная поверхность была расположена ниже впадины паза (вид 21).

Конструкция глухого отверстия со шлицами, обрабатываемыми прошиванием (вид 22), ошибочна: ширина b канавки за шлицами недостаточна для выхода прошивки. В конструкции 23 длина шлицев уменьшена; ширина b 1 полости увеличена. Понижение смежной поверхности (вид 24) позволяет более производительно и точно обрабатывать шлицы протягиванием.

На видах 25, 28, 31 показаны нетехнологичные формы конических поверхностей, не обеспечивающие перебега и врезания инструмента. Правильные конструкции приведены на видах 26, 27, 29, 30, 32, 33. На видах 34, 35 изображено нецелесообразное, а на виде 36 целесообразное выполнение сферических поверхностей.

Рассмотрим примеры неправильной и правильной конструкций типовых машиностроительных узлов и деталей.

В конструкции шлицевого вала с прямобочными шлицами (рис. 510, 1) прошлифовать рабочие грани и центрирующие поверхности вала невозможно. Для выхода шлифовального круга необходимо понизить поверхности вала у оснований шлицев (вид 2) или предусмотреть канавки (вид 3).

На видах 4, 5 изображены соответственно неправильные и правильные конструкции призматической направляющей, на видах 6, 7 — измерительной скобы.

Для облегчения обработки внутренней полости шарикового подпятника (вид 8) необходимо сделать канавку у основания полости (вид 9) или применить составные конструкции 10, 11.

В колесе свободного хода (вид 12) спиральные рабочие поверхности зубьев (обрабатываемые обычно на затыловочных шлифовальных станках) следует снабдить канавками для выхода шлифовального камня (вид 13).

В прорезной втулке (вид 14) прорези отфрезеровать невозможно, так как фреза упирается в стенку втулки. Заменив три прорези четырьмя (вид 15), можно профрезеровать прорези напроход.

Обработать торцовый паз в валу (вид 16) очень трудно. Если дать выход режущему инструменту в поперечное сверление у основания паза (вид 17), то появляется возможность просверлить вал по краям паза (штриховые линии) и удалить перемычку между отверстиями строганием. Еще проще обработка при составной конструкции с напрессовкой бандажа на прорезную часть вала (вид 18).

Торцовые пазы на валу (вид 19) можно выполнить только высадкой. Отделение пазов от цилиндрической поверхности вала кольцевой канавкой (вид 20) позволяет обработать пазы строганием. В составной конструкции (вид 21) возможна более точная и производительная обработка пазов фрезерованием напроход.

В чашечной детали (вид 22) прошлифовать цапфу вала можно только дорогим и малопроизводительным способом — с помощью чашечного круга, эксцентрично установленного по отношению к валу (вид 25). Для обеспечения цилиндрического шлифования цапфу следует выпустить из чашечки на расстояние s, достаточное для выхода круга (вид 24).

В чашечной детали (вид 25) шлифованию внутренней поверхности препятствует выступающий торец ступицы. Неправильна и конструкция 26, где конец шлифуемой поверхности совпадает с торцом ступицы: на крайних участках поверхности, шлифуемых кромкой круга, образуется заусенец.

В правильной конструкции 27 торец ступицы смешен относительно шлифуемой поверхности на величину s, обеспечивающую необходимую шероховатость поверхности.

В блоке зубчатых колес (вид 28) для нарезания зубьев шестерни нужно предусмотреть расстояние а (вид 29), достаточное для выхода долбяка (вид 30). Минимальная величина а (мм) в зависимости от модуля m зуба приведена ниже.

При нарезании зубьев червячной фрезой требуются значительно большие расстояния, определяемые диаметром фрезы (вид 31) и углом (в плане) ее установки относительно оси блока. При необходимости близкого расположения венцов и этих случаях следует применять составные конструкции (вид 32).

Для того чтобы при обработке шлицев методом обкатывания червячная фреза не врезалась в упорный буртик вала (вид 33), буртик должен быть удален на расстояние l (вид 34):

где Н и H 1 — высота шлицев и буртика фланца, R фр — радиус фрезы. Наиболее целесообразно обеспечить обработку шлицев напроход, создав упор, например, с помощью кольцевого стопора (вид 35).

На виде 36 показан конический клапан с направляющим хвостовиком. Фаска клапана и центрирующие поверхности хвостовика шлифуются за одну операцию профильным кругом.

При такой конструкции обеспечить необходимую шероховатость поверхности участка сопряжения фаски с хвостовиком невозможно. Неверна и конструкция 37 с выточкой, так как диаметр d хвостовика равен малому диаметру фаски, вследствие чего возможно образование заусенца на фаске.

В правильной конструкции диаметр d хвостовика меньше малого диаметра фаски, что обеспечивает перекрытие шлифуемых поверхностей хвостовика и фаски абразивным кругом.