Параметры эллипсоидов. Понятие о геоиде, квазигеоиде, земном эллипсоиде. Смотреть что такое "Эллипсоид Красовского" в других словарях

И названо в честь Ф. Н. Красовского.

В любом случае, на нём основана геодезическая система координат Пулково-1942 (СК-42), СК-63, используемая в России и некоторых других странах, а также системы координат Afgooye и Hanoi 1972.

СК-42 по постановлению Совета Министров № 760 введена с 1946 года для выполнения работ на всей территории СССР . С 1 июля 2002 года согласно Постановлению Правительства РФ от 28 июля 2000 года № 568 вводится новая система СК-95, также основанная на эллипсоиде Красовского.

Размеры земного эллипсоида по Красовскому

См. также

Ссылки

  • Морозов В.П. Курс сфероидической геодезии. Изд. 2, перераб. и доп. М., Недра, 1979, 296 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Эллипсоид Красовского" в других словарях:

    Земной эллипсоид, введённый в США в 1910 году. Назван в честь американского геодезиста Джона Хейфорда (1868 1925). Эллипсоид Хейфорда известен также как «Международный эллипсоид 1924 года» (англ. International ellipsoid 1924) после того, как … Википедия

    Земной эллипсоид, определенный из градусных измерений в 1940 под руководством Ф. Н. Красовского. Размеры референц эллипсоида: большая полуось (радиус экватора) 6 378 245 м, полярное сжатие 1: 298,3 … Большой Энциклопедический словарь

    КРАСОВСКОГО ЭЛЛИПСОИД, земной эллипсоид, определенный из градусных измерений в 1940 под руководством Ф. Н. Красовского. Размеры референц эллипсоида: большая полуось (радиус экватора) 6 378 245 м, полярное сжатие 1: 298,3 … Энциклопедический словарь

    Эллипсоид Красовского земной эллипсоид, определённый из градусных измерений в 1940 г. группой под руководством Ф. Н. Красовского. Согласно другим источникам, определение было закончено в 1942 г. группой под руководством геодезиста А. А. Изотова и … Википедия

    Земной эллипсоид, размеры которого выведены в 1940 в Центральном научно исследовательский институте геодезии, аэросъёмки и картографии советским геодезистом А. А. Изотовым на основании исследований, проведённых под общим руководством Ф. Н …

    Земной эллипсоид, определённый из градусных измерений в 1940 под рук. Ф.Н. Красовского. Размеры ре ференц эллипсоида: большая полуось (радиус экватора) 6378245 м, полярное сжатие 1: 298,3 … Естествознание. Энциклопедический словарь

    Земной эллипсоид, определённый из градусных измерений в 1940 под руководством Ф. Н. Красовского. Размеры референц эллипсоида: большая полуось (радиус экватора) 6378245 м, полярное сжатие 1:298,3 … Энциклопедический словарь

    Эллипсоид вращения, размеры которого подбираются при условии наилучшего соответствия фигуре квазигеоида для Земли в целом (общеземной эллипсоид) или отдельных её частей (референц эллипсоид). Содержание 1 Параметры земного эллипсоида 2 … Википедия

    Референц эллипсоид приближение формы поверхности Земли (а точнее, геоида) эллипсоидом вращения, используемое для нужд геодезии на некотором участке земной поверхности (территории отдельной страны или нескольких стран). В России (в СССР с… … Википедия

    Эллипсоид вращения, наилучшим образом представляющий фигуру Геоида, т. е. фигуру Земли в целом. Для наилучшего представления геоида в пределах всей Земли обычно вводят общий З. э. и определяют его так, чтобы: 1) объём его был равен объёму … Большая советская энциклопедия

Изучение фигуры Земли относится к числу древнейших научных проблем естествознания, определенных потребностями практической деятельно
сти человека: землеизмерения, строительство оросительных систем в долине Нила, сооружения канала между Нилом и Красным морем и др. (X, IV в.в. до нашей эры), которые не могли быть осуществлены без соответствующего топографо-геодезического обеспечения.
Предположения о шарообразности земли появились в VI веке до нашей эры, а с IV века до нашей эры были высказаны некоторые из известных нам доказательств, что Земля имеет форму шара (Пифагор, Эратосфен). Античными учеными доказательства шарообразности Земли основывались на следующих явлениях:
- кругообразный вид горизонта на открытых пространствах, равнинах, морях и т.д.;
- круговая тень Земли на поверхности Луны при лунных затмениях;
- изменение высоты звезд при перемещении с севера (N) на юг (S) и обратно, обусловленное выпуклостью полуденной линии и др.
В сочинении «О небе» Аристотель (384 – 322 г.г. до н.э.) указывал, что Земля не только шарообразна по форме, но и имеет конечные размеры; Архимед (287 – 212 г.г. до н.э.) доказывал, что поверхность воды в спокойном состоянии является шаровой поверхностью. Ими же введено понятие о сфероиде Земли, как геометрической фигуре, близкой по форме к шару.
Современная теория изучения фигуры Земли берет начало от Ньютона (1643 – 1727 г.г.), открывшего закон всемирного тяготения и применившего его для изучения фигуры Земли.
К концу 80-х годов XVII века были известны законы движения планет вокруг Солнца, весьма точные размеры земного шара, определенные Пикаром из градусных измерений (1670 г.), факт убывания ускорения силы тяжести на поверхности Земли от севера (N) к югу (S), законы механики Галилея и исследования Гюйгенса о движении тел по криволинейной траектории. Обобщение указанных явлений и фактов привели ученых к обоснованному взгляду о сфероидичности Земли, т.е. деформации ее в направлении полюсов (сплюсности).
Знаменитое сочинение Ньютона – «Математические начала натуральной философии» (1867 г.) излагает новое учение о фигуре Земли. Ньютон пришел к выводу о том, что фигура Земли должна быть по форме в виде эллипсоида вращения с небольшим полярным сжатием (этот факт обосновывался им уменьшением длины секундного маятника с уменьшением широты и уменьшением силы тяжести от полюса к экватору из-за того, что «Земля на экваторе немного выше»).
Исходя из гипотезы, что Земля состоит из однородной массы плотности, Ньютон теоретически определил полярное сжатие Земли (α) в первом приближении равном, примерно, 1: 230.
На самом деле Земля неоднородна: кора имеет плотность 2,6 г/см3, тогда как средняя плотность Земли составляет 5,52 г/см3.
Неравномерное распределение масс Земли продуцирует обширные пологие выпуклости и вогнутости, которые сочетаясь образуют возвышенности, углубления, впадины и другие формы. Заметим, что отдельные возвышения над Землей достигают высот более 8000 метров над поверхностью океана. Известно, что поверхность Мирового океана (МО) занимает 71 %, суша – 29 %; средняя глубина МО (Мирового океана) 3800м, а средняя высота суши – 875 м. Общая площадь земной поверхности равна 510 х 106 км2.
Из приведенных данных следует, большая часть Земли покрыта водой, что дает основание принять ее за уровенную поверхность (УП)и, в конечном итоге, за общую фигуру Земли. Фигуру Земли можно представить, вообразив поверхность, в каждой точке которой сила тяжести направлена по нормали к ней (по отвесной линии).
Сложную фигуру Земли, ограниченную уровенной поверхностью, являющуюся началом отчета высот, принято называть геоидом. Иначе, поверхность геоида, как эквипотенциальная поверхность, фиксируется поверхностью океанов и морей, находящихся в спокойном состоянии. Под материками поверхность геоида определяется как поверхность, перпендикулярная силовым линиям (рис. 3-1).
P.S. Название фигуры Земли – геоид – предложено немецким ученым –физиком И.Б. Листигом (1808 – 1882 г.г.).
При картографировании земной поверхности, на основании многолетних исследований ученых, сложную фигуру геоида без ущерба для точности, заменяют математически более простой – эллипсоидом вращения.
Эллипсоид вращения – геометрическое тело, образующееся в результате вращения эллипса вокруг малой оси.
Эллипсоид вращения близко подходит к телу геоида (уклонение не превышает 150 метров в некоторых местах). Размеры земного эллипсоида определялись многими учеными мира.
Фундаментальные исследования фигуры Земли, выполненные русскими учеными Ф.Н. Красовским и А.А. Изотовым, позволили развить идею о трехосном земном эллипсоиде с учетом крупных волн геоида, в результате были получены его основные параметры:
а = 6 379 245 м, в = 6 356 863, α = 1: 298,3 (α = (а - в)/ а)
В последние годы (конец XX и начало XXI в.в.) параметры фигуры Земли и внешнего гравитационного потенциала определены с использованием космических объектов и применением астрономо–геодезических и гравиметрических методов исследований так надежно, что теперь речь идет об оценке их измерений во времени.
Трехосный земной эллипсоид, характеризующий фигуру Земли, подразделяют на общеземной эллипсоид (планетарный), подходящий для решения глобальных задач картографии и геодезии и референц – эллипсоид, который используют в отдельных регионах, странах мира и их частях.
P.S. Референц – эллипсоид – определенным образом ориентирован в теле Земли и принят для выполнения топографических, геодезических и картографических работ.
Эллипсоид вращения однозначно характеризуют два параметра, а именно: большая (экваториальная) полуось – «а» и полярное сжатие – «α». Для точных расчетов используют и другие параметры, такие как малая (полярная) полуось – «в» и первый эксцентриситет меридионального эллипса – «е». Выше указанные параметры взаимосвязаны друг с другом следующим образом:
α = (а - в)/а (11)
е2 =(а2 - в2)/а2 (12)
в = а (1 - α) = а√1 - е2 (13)
α = 1 - √1 - е2 (14)
е2 = α (2 - α) (15)

Известно, что Земля шарообразна, т.е. не обладает формой идеального шара. Фигура ее неправильна, и, как всякое вращающееся тело, она немного сплюснута у полюсов. Кроме того, из-за неравномерного распределения масс земного вещества и глобальных тектонических деформаций Земля имеет обширные, хотя и довольно пологие, выпуклости и вогнутости. Сложную фигуру нашей планеты, ограниченную уровенной поверхностью океана, называют геоидом. Точно определить его форму практически невозможно, но современные высокоточные измерения со спутников позволяют иметь о нем достаточно хорошее представление и даже описать уравнением.

Наилучшее геометрическое приближение к реальной фигуре Земли дает эллипсоид вращения - геометрическое тело, которое образуется при вращении эллипса вокруг его малой оси. Сжатие эллипсоида моделирует сжатие планеты у полюсов. На рисунке видно, насколько не совпадают меридиональные сечения геоида и земного эллипсоида.

Вычисление и уточнение размеров земного эллипсоида, начатое еще в XVIII в., продолжается по сей день. Теперь для этого используют спутниковые наблюдения и точные гравиметрические измерения. Это непростая задача: нужно рассчитать геометрически правильную фигуру - референц-эллипсоид, который наилучшим образом приближен к геоиду и относительно которого будут выполняться все геодезические вычисления и рассчитываться картографические проекции. Многие исследователи, пользуясь разными исходными данными и методиками расчета, получают неодинаковые результаты. Поэтому исторически сложилось так, что в разные времена и в разных странах были приняты и законодательно закреплены различные эллипсоиды, и их параметры не совпадают между собой.

В России принят референц-эллипсоид Ф. Н. Красовского, вычисленный в 1940 г. Его параметры таковы:

большая полуось {а) - 6 378 245 м;

малая полуось (b) - 6 356 863 м;

сжатие а = (а - b)/a- 1: 298,3.

В США и Канаде до недавнего времени использовали эллипсоид Кларка, рассчитанный еще в 1866 г., его большая полуось на 39 м короче, чем в российском эллипсоиде, а сжатие определено в 1:295,0. Во многих странах Западной Европы и некоторых государствах Азии принят эллипсоид Хейфорда, вычисленный в 1909 г., а в бывших английских колониях - в Индии и странах Южной Азии, используют рассчитанный англичанами в 1830 г. эллипсоид Эвереста. В 1984 г. на основе спутниковых измерений вычислен международный эллипсоид WGS-84 (World Geodetic System). Всего в мире насчитывается около полутора десятков разных эллипсоидов.

Карты, составленные на основе разных эллипсоидов, получаются в несколько различающихся координатных системах, что создает неудобства. Однако для принятия единого международного эллипсоида требуется перевычислить координаты и пересоставить все карты, а это долгое, сложное и, главное, дорогостоящее дело.

Несовпадения бывают заметны главным образом на крупномасштабных картах при определении по ним точных координат объектов. Но на широко используемых географами средне- и мелкомасштабных картах такие различия не очень чувствительны. Более того, иногда вместо эллипсоида берут шар и тогда в качестве среднего радиуса Земли принимают величину Я = 6367,6 км. Погрешности при замене эллипсоида шаром оказываются столь малы, что никак не проявляются на большинстве географических карт.

Геоид, квазигеоид и общий земной эллипсоид – это три модели Земли. Дадим их определения с точки зрения современных представлений о фигуре Земли.

Под фигурой Земли в настоящее время понимают фигуру, ограниченную физической поверхностью Земли, т.е. поверхностью ее твердой оболочки на суше и невозмущенной поверхностью морей и океанов.

Суша составляет третью часть от земной поверхности и в среднем она возвышается над водой примерно на 900 метров, что незначительно по сравнению с радиусом Земли (6371км). Поэтому за фигуру Земли в первом приближении принят геоид.

Дадим два определение геоида:

1. Строгое: геоид – это уровенная поверхность поля силы тяжести Земли, проходящая через начало счета высот.

2. Нестрогое: геоид – это фигура, ограниченная невозмущенной поверхностью морей и океанов и продолженная под материками так, чтобы отвесные линии во всех ее точках были перпендикулярны к ней.

Более ста лет, т. е. с первой половины прошлого века геодезисты и геофизики изучали фигуру геоида и считали это основной научной задачей высшей геодезии. В середине прошлого столетия советским ученым Молоденским было доказано, что фигура геоида, строго говоря, неопределима. Он предложил основной задачей высшей геодезии считать изучение фигуры реальной Земли и ее гравитационного поля. Молоденский создал теорию, которая позволяет точное определение фигуры Земли на основании выполненных на земной поверхности измерений, без привлечения каких – либо гипотез об ее внутреннем строении.

В теории Молоденского в качестве вспомогательной вводится поверхность квазигеоида, совпадающая с геоидом на океанах и морях и весьма мало отступающая от поверхности геоида на суше (менее 2м) .

В отличие от геоида поверхность квазигеоида может быть строго определена по результатам наземных наблюдений.

С понятием земного эллипсоида мы уже столкнулись при рассмотрении главной научной задачи высшей геодезии, поверхность земного эллипсоида является той математически и геометрически простой поверхностью, на которой могут быть решены геодезические задачи по координированию точек земной поверхности и которая достаточной близка к поверхности Земли. Земной эллипсоид представляет собой эллипсоид вращения с малым полярным сжатием. Его поверхность может быть получена вращением полуэллипса РЕР 1 вокруг его малой оси РР 1 (рис 1.2).



Рис. 1.2. К понятию земного эллипсоида: - большая полуось; b - малая полуось.

Поверхность земного эллипсоида в геодезии принимают за отсчетную, определяя относительно нее высоты точек поверхности изучаемой фигуры Земли.

Форма и размеры земного эллипсоида характеризуются большой и малой полуосями и b , а чаще большой полуосью и полярным сжатием

(1.1)

или большой полуосью и эксцентриситетом меридианного эллипса:

(1.2)

Эллипсоид, имеющий наибольшую близость к фигуре Земли в целом, называется общим земным эллипсоидом .

Параметры общего земного эллипсоида определяются под условиями:

1) центр эллипсоида должен совпадать с центром масс Земли, а его малая ось с осью вращения Земли;

2) объем эллипсоида должен быть равен объему геоида (квазигеоида);

3) сума квадратов отклонений по высоте поверхности эллипсоида от поверхности геоида (квазигеоида) должна быть минимальной.

Параметры земного эллипсоида могут быть получены с помощью так называемых градусных измерений , заключающихся в проложении рядов триангуляции по направлениям меридианов и параллелей на разных широтах с определением на конечных пунктах астрономических широт, долгот и азимутов сторон, а также по результатам спутниковых наблюдений.

В течение полутора веков ученые разных стран занимались определением параметров земного эллипсоида, используя доступные им результаты градусных измерений. Итогом этих определений служит появление ряда эллипсоидов.

В каждой стране принимают в качестве рабочего тот эллипсоид, который наилучшим образом подходит для ее территории. В соответствии с этим критерием выполняют и его ориентирование на теле Земли, т.е. определение координат начального пункта. Такие рабочие эллипсоиды, используемые в разных странах, называются референц - эллипсоидами. В СССР и ряде стран восточной Европы принят референц - эллипсоид Красовского, 1940г. Эллипсоид Красовского является наиболее точным из всех эллипсоидов, полученных из обработки наземных измерений. Его размеры близки к размерам ОЗЭ, найденным по данным наблюдений ИСЗ.

5. Основные разделы высшей геодезии; связь дисциплины с другими науками

Высшая геодезия - это обширная область знаний. Она состоит из ряда больших разделов, часть из которых при подробном рассмотрении являются самостоятельными дисциплинами. Перечислим основные разделы высшей геодезии.

1. Основные геодезические работы. В этом разделе рассматриваются методы точного определения взаимного положения точек земной поверхности путем выполнения высокоточных угловых, линейных и нивелирных измерений (триангуляция, полигонометрия и нивелирование); основная координатная линия, относительно которой производятся указанные измерения, - отвесная линия.

2. Геодезическая гравиметрия: рассматривает методы измерения ускорения силы тяжести в точках земной поверхности, а также методы учета неоднородности гравитационного поля в результатах геодезических измерений.

3. Геодезическая астрономия: рассматривает методы определения широт, долгот и азимутов из наблюдений небесных тел.

4. Космическая или спутниковая геодезия: решает те же задачи, что и высшая геодезия, но при помощи наблюдений за искусственные спутники Земли.

5. Сфероидическая геодезия: рассматривает методы решения геодезических задач на поверхности земного эллипсоида.

6. Теоретическая геодезия: занимается разработкой теорий и методов решения основной научной задачи геодезии – определение фигуры и внешнего гравитационного поля Земли - и их изменений во времени.

В своих исследованиях высшая геодезия широко использует новейшие достижения физики, математики, астрономии. При разработке высокоточной измерительной техники – прикладной оптики, точного приборостроения, лазерной техники и т.д. При математической обработке результатов измерений применяются теория вероятностей, математическая статистика, способ наименьших квадратов. Все вычисления выполняются на новейших ЭВМ. Для решения научных геодинамических задач необходима тесная взаимосвязь высшей геодезии с геологией, геотектоникой, геофизикой, сейсмологией и т.д.

6.Основные системы координат, применяемые в высшей геодезии. Понятие о геодезических и астрономических координатах и азимутах

В высшей геодезии используются следующие системы координат:

1. Система геодезических координат.

2. Система прямоугольных пространственных координат.

3. Система плоских прямоугольных координат.

4. Система прямоугольных прямолинейных координат х , y , отнесенных к плоскости меридиана данной точки.

5. Система геоцентрических координат.

6. Система координат с приведенной широтой и геодезической долготой.

7. Система прямоугольных сфероидических координат.

В практике геодезических работ наиболее часто используются первые три из перечисленных систем координат, которые мы и рассмотрим более подробно.

Н
Е
Е

Рис. 2.1. Геодезические координаты В , L , Н точки земной поверхности М .

РЕ 0 P" -

РmР" - плоскость местного геодезического меридиана (проведенного через точку М(m) местности).

Мmn - нормаль к эллипсоиду, опущенная из точки М.

Геодезической широтой точки М(m ) называется острый угол В между плоскостью экватора Е и нормалью (Мmn) к поверхности эллипсоида в данной точке.

Геодезическая широта изменяется от 0 0 до 90 0 . Она имеет положительный знак в северном полушарии и отрицательный - в южном.

Геодезической долготой L точкиМ (m) называется двугранный угол Рm E 0 между плоскостью РЕ 0 P" гринвичского (нулевого) меридиана и плоскостью РmР" местного геодезического меридиана точки М(m ). Долготы отсчитываются от начального меридиана и изменяются от 0 0 до 360 0 . В России и Белоруссии с запада на восток, в некоторых стран наоборот.

Геодезической высотой точки М местности называется расстояние Mm этой точки от поверхности референц – эллипсоида, отсчитанное по нормали.

Точки, лежащие выше поверхности эллипсоида имеют положительные высоты, ниже – отрицательные.

Геодезические координаты не могут быть непосредственно измерены.

Астрономические координаты характеризуются астрономической широтой и астрономической долготой l.

m
g
K

Рис. 2.2. Астрономические координаты иl точки земной поверхности М .

ЕЕ 0 - плоскость земного экватора;

РЕ 0 Е" - плоскость Гринвичского или нулевого меридиана;

Р 1 m Р 1 " - плоскость местного астрономического меридиана.

М mg - отвесная линия , проходящая через точку М.

Астрономической широтой точки М(m ) называется острый угол между плоскостью земного экватора Е и отвесной линией Мmg в данной точке.

Астрономическая широта изменяется от 0 0 до 90 0 . Она имеет положительный знак в северном полушарии и отрицательный - в южном.

Астрономической долготой точкиМ (m) называется двугранный уголмежду плоскостью РЕ 0 P" гринвичского (нулевого) меридиана и плоскостью астрономического меридиана данной точки. Под плоскостью астрономического меридиана точки понимают плоскость, проходящую через отвесную линию (Мmg ) в данной точке и прямую, располагающуюся параллельно оси вращения Земли (в общем случае плоскость астрономического меридиана не проходит через полюсы Земли).