Как посчитать падение напряжения в проводах. Расчет потери напряжения по длине кабеля. Вывод по выбору сечения провода для постоянного напряжения

Для того чтобы обеспечить подачу напряжения от распределительного устройства к конечному потребителю используются линии электропередач. Они могут быть воздушными или кабельными и имеют значительную протяженность.

Как и все проводники, они имеют сопротивление, которое зависит от длины и чем они протяжение, тем больше потеря напряжения.

И чем длиннее линия, тем потери напряжения будут больше. Т.е. напряжение на входе и в конце линии будет разное.

Чтобы оборудование работало без сбоев, эти потери нормируются. Они суммарно должны иметь значение, не превышающее 9%.

Максимальное понижение напряжение на вводе составляет пять процентов, а до самого удаленного потребителя не более четырех процентов. В трехфазной сети при трех или четырех проводной сети этот показатель не должен превышать 10%.

Если эти показатели не соблюдаются, конечные потребители не смогут обеспечить номинальные параметры. При снижении напряжения возникают следующие симптомы:

  • Осветительные приборы, в которых используются лампы накаливания, начинают работать (светиться) в половину накала;
  • При включении электродвигателей уменьшается пусковое усилие на валу. В результате чего двигатель не вращается, и как следствие происходит перегрев обмоток и выход из строя;
  • Некоторые электроприборы не включаются. Не хватает напряжения, а другие приборы после включения могу выходить из строя;
  • Установки, чувствительные к входному напряжению, работают нестабильно, так же могут не включаться источники света, у которых нет нити накаливания.

Передача электроэнергии производится по воздушным или кабельным сетям. Воздушные изготовлены из алюминия, а кабельные могут быть алюминиевыми или медными.

В кабелях кроме активного сопротивления имеется емкостное сопротивление. Поэтому потеря мощности зависит от длины кабеля.

Причины, приводящие к снижению напряжения

Потери напряжения в линии электропередач возникают по следующим причинам:

  • По проводу проходит ток, который нагревает его, в результате увеличивается активное и емкостное сопротивление;
  • Трехфазный кабель при симметричной нагрузке имеет одинаковые значения напряжения на жилах, а ток нулевого провода будет стремиться к нулю. Это справедливо если нагрузка постоянная и чисто активная, что в реальных условиях невозможно;
  • В сетях, кроме активной нагрузки, имеется реактивная нагрузка в виде обмоток трансформатора, реакторов и т.п. и как следствие в них появляется индуктивная мощность;
  • В результате сопротивление будет складываться из активного, емкостного и индуктивного. Оно влияет на потери напряжения в сети.

Потери тока зависят от длины кабеля. Чем он протяжение, тем больше сопротивление, а это значит, что и потери значительнее. Отсюда следует, что потери мощности в кабеле зависят от протяженности или длины линии.

Расчет значения потерь

Для обеспечения работоспособности оборудования необходимо произвести расчет. Он проводится в момент проектирования. Современный уровень развития вычислительной техники позволяет производить вычисления с помощью онлайн калькулятора, который позволяет быстро произвести расчет потерь мощности кабеля.

Для вычисления достаточно ввести необходимые данные. Задают параметры тока – постоянный или переменный. Материал линии электропередач – алюминий или медь. Указывают, по каким параметрам производится расчет потери мощности – по сечению или диаметру провода, току нагрузки или сопротивлению.

Дополнительно указывают напряжение сети и температуру кабеля (зависит от условий эксплуатации и способе прокладки). Эти значения подставляются в таблицу расчета и производят расчет с помощью электронного калькулятора.

Можно произвести расчет на основании математических формул. Чтобы правильно понять и оценить процессы, происходящие при передаче электрической энергии, применяют векторную форму представления характеристик.

А для минимизации расчетов трехфазную сеть представляют как три однофазные сети. Сопротивление сети представлено как последовательное подключение активного и реактивного сопротивления к сопротивлению нагрузки.

При этом формула расчета потери мощности в кабеле существенно упрощается. Для получения необходимых параметров используют формулу.

Эта формула показывает потерю мощности кабеля в зависимости от тока и сопротивления, распределенного по длине кабеля.

Однако, эта формула справедлива, если знать силу тока и сопротивление. Сопротивление можно вычислить по формуле. Для меди оно будет равно р=0,0175Ом*мм2/м, а для алюминия р=0,028Ом*мм2/м.

Зная значение удельного сопротивления вычисляют сопротивление, которое будет определяться по формуле

R=р*I/S, где р- удельное сопротивление, I-длина линии, S- площадь сечения провода.

Для того чтобы выполнить расчет потерь напряжения по длине кабеля, необходимо полученные значения подставить в формулу и произвести вычисления. Эти расчеты можно производить при монтаже электрических сетей или охранных систем и видеонаблюдения.

Если вычисления потери мощности не производить, то это может привести к снижению питающего напряжения потребителей. В результате произойдет перегрев кабеля, он может сильно нагревается, и как следствие происходит повреждение изоляции.

Что может привести к поражению людей электрическим током или короткому замыканию. Снижение напряжения в линии может привести к выходу их строя электронного оборудования.

Поэтому важно при проектировании электропроводки производить расчет потери напряжения в подводящих проводах и проложенном кабеле.

Методы сокращения потерь

Потери мощности можно сократить следующими методами:

  • Увеличить сечение проводников. В результате снизится сопротивление, и потери уменьшатся;
  • Снижение потребляемой мощности. Этот параметр не всегда можно изменить;
  • Изменение протяженности кабеля.

Уменьшение мощности и изменение длины линии осуществить практически не возможно. Поэтому если увеличивать сечение провода без расчета, то на длинной линии это приведет к неоправданным затратам.

А это значит, что очень важно произвести расчет, который позволит правильно рассчитать потери мощности в кабеле и выбрать оптимальное значение сечения жил.

В домашних условиях мы часто применяем переносные удлинители – розетки для временного (как правило остающееся на постоянно) включения бытовых приборов: электронагревателя, кондиционера, утюга с большими токами потребления. Кабель для этого удлинителя обычно выбирается по принципу – что попало под руку, а это не всегда соответствует необходимым электрическим параметрам.

В зависимости от диаметра (или от поперечного сечения провода в мм.кв.) провод обладает определенным электрическим сопротивлением для прохождения электрического тока.

Чем больше поперечное сечение проводника, тем меньше его электрическое сопротивление, тем меньше падение напряжения на нем. Соответственно меньше потеря мощности в проводе на его нагрев.

Проведем сравнительный анализ потери мощности на нагрев в проводе в зависимости от его поперечного сечения. Возьмем наиболее распространенные в быту кабели с паперечным сечением: 0,75; 1,5; 2,5 мм.кв. для двух удлинителей с длиной кабеля: L = 5 м. и L = 10м.

Возьмем для примера нагрузку в виде стандартного электронагревателя с электрическими параметрами: - напряжение питания U = 220 Вольт; - мощность электронагревателя Р = 2,2 КВт = 2200 Вт; - ток потребления I = P/ U = 2200 Вт / 220 В = 10 А.

Из справочной литературы, возьмем данные сопротивлений 1 метра провода разных поперечных сечений.

Приведена таблица сопротивлений 1 метра провода изготовленного из меди и алюминия.

Посчитаем потерю мощности, уходящей на нагрев для поперечного сечения провода S = 0,75 мм.кв. Провод изготовлен из меди.

Сопротивление 1 метра провода (из таблицы) R1 = 0,023 Ом. Длина кабеля L = 5 метров. Длина провода в кабеле (туда и обратно) 2 · L =2 · 5 = 10 метров. Электрическое сопротивление провода в кабеле R = 2 · L · R1 = 2 · 5 · 0,023 = 0,23 Ом.

Падение напряжения в кабеле при прохождении тока I = 10 A будет: U = I · R = 10 А · 0,23 Ом = 2,3 B. Потеря мощности на нагрев в самом кабеле составит: P = U · I = 2,3 В · 10 А = 23 Вт.

Если длина кабеля L = 10 м. (того же сечения S = 0,75 мм.кв.), потеря мощности в кабеле составит 46 Вт. Это составляет примерно 2 % мощности потребляемой электронагревателем от сети.

Для а кабеля с алюминиевыми жилами того же сечения S = 0,75 мм.кв. показания увеличиваются и составляют для L = 5 м -34,5 Вт. Для L = 10 м - 69 Вт.

Все данные расчетов для кабелей сечением 0,75; 1,5; 2,5 мм.кв. для длины кабелей L = 5 и L = 10 метров, приведены в таблице. Где: S – сечение провода в мм.кв.; R1 – сопротивление 1 метра провода в Ом; R - сопротивление кабеля в Омах; U– падение напряжения в кабеле в Вольтах; Р – потеря мощности в кабеле в ватах или в процентах.

Какие же выводы нужно сделать из этих расчетов?

  • - При одном и том же поперечном сечении, медный кабель имеет больший запас надежности и меньше потерь электрической мощности на нагрев провода Р.
  • - С увеличением длины кабеля увеличиваются потери Р. Чтобы скомпенсировать потери необходимо увеличить поперечное сечение проводов кабеля S.
  • - Кабель желательно выбирать в резиновой оболочке, а жилы кабеля многожильными.

Для удлинителя желательно использовать евро-розетку и евро-вилку. Штырьки евро-вилки имеют диаметр 5 мм. У простой электрической вилки диаметр штырьков 4 мм. Евро-вилки рассчитаны на больший ток, чем простые розетка и вилка. Чем больше диаметр штырьков вилки, тем больше площадь контакта в месте соединения вилки и розетки, следовательно меньшее переходное сопротивление. Это способствует меньшему нагреву в месте соединения вилки и розетки.

domasniyelektromaster.ru

Расчёт потерь в кабеле

При работе токопроводящие жилы нагреваются и выделяют тепло. Чем выше напряжение и сопротивление жил, тем больше потери в кабеле.

Потери указывают в процентах от номинального напряжения.

Для избежания ошибок при расчётах принято пользоваться таблицами Кнорринга, основанные на взаимосвязи мощности токовой нагрузки и длины силовой линии.

Момент нагрузки для медных проводников, кВт∙м, двухпроводных линий на напряжение 220 В

Таб.2 Напряжение 380/220 В для трёхфазных и четырёхфазных линий. При разнице нагрузок в линиях производятся расчёты по таблице 1.

Момент нагрузки для медных проводников, кВт∙м, линий четырехпроводных трехфазных с нулем на напряжение 380/220 В или трехпроводных трехфазных без нуля на 380 В при сечении проводника s, мм2, равном

Момент нагрузки для медных проводников, кВт∙м, двухпроводных линий на напряжение 12 В

При сечении проводника s, мм2, равном

Оптимальная работа силового кабеля возможна при потере, не больше чем 5%. Если получившийся показатель выше, необходимо заменить кабель на больший по площади сечения токопроводящей жилы. Иначе система не будет работать, также повышается вероятность короткого замыканий. Покупать силовой кабель с большим, чем нужно, сечением, также не стоит. Это значительно повышает стоимость эксплуатации сетей.

При выборе кабеля ориентируйтесь на полученные при расчётах показатели.

ivkz.ru

Потери в кабеле от длины таблица

Расчёт потерь напряжения в кабеле онлайн. Потеря напряжения в кабеле - величина, равная разности между установившимися значениями действующего напряжения, измеренными в двух точках системы электроснабжения (по ГОСТ 23875-88).

При равенстве сопротивлений Zп1=Zп2=Zп3 и Zн1=Zн2=Zн3 ток в нулевом проводе отсутствует (Рис.1), поэтому для трёхфазных линий потери напряжения рассчитываются для одного проводника. В двух- и однофазных линиях, а также в цепи постоянного тока, ток идёт по двум проводникам (Рис.2), поэтому вводится коэффициент 2 (при условии равенства Zп1=Zп2). Расчёт потерь линейного (между фазами) напряжения в кабеле при трёхфазном переменном токе производится по формулам: ΔU(в)=(PRL+QXL)/Uл; ΔU(%)=(100(PRL+QXL))/ Uл² или (если известен ток) ΔU(в)=√3·I(R·cosφ·L+X·sinφ·L); ΔU(%)=(100√3·I(R·cosφ·L+X·sinφ·L))/ Uл. где: Q= Uл·I·sinφ Расчёт потерь фазного (между фазой и нулевым проводом) напряжения в кабеле производится по формулам: ΔU(в)=2·(PRL+QXL)/Uф; ΔU(%)=2·(100(PRL+QXL))/ Uф² или (если известен ток) ΔU(в)=2·I(R·cosφ·L+X·sinφ·L); ΔU(%)=2·(100·I(R·cosφ·L+X·sinφ·L))/Uф, где: Q= Uф·I·sinφ Для расчёта потерь линейного напряжения U=380 В; 3 фазы. Для расчёта потерь фазного напряжения U=220 В; 1 фаза.

Для постоянного тока cosφ=1; 1 фаза.

P - активная мощность передаваемая по линии, Вт;Q - реактивная мощность передаваемая по линии, ВАр;R - удельное активное сопротивление кабельной линии, Ом/м;X - удельное индуктивное сопротивление кабельной линии, Ом/м;L - длина кабельной линии, м;Uл - линейное напряжение сети, В;Uф - фазное напряжение сети, В.

Как рассчитать потери напряжения в кабеле

Вопрос качества передачи и получения электрической энергии во многом зависит от состояния оборудования, которое участвует в этом сложном технологическом процессе. Поскольку в энергетике транспортируются огромные мощности на большие расстояния, то к характеристикам линий электропередач предъявляются повышенные требования.

Причем снижению потерь напряжения постоянно уделяется внимание не только на протяженных высоковольтных магистралях, но и во вторичных цепях, например, измерительных трансформаторов напряжения, как показано на фотографии.

Кабели вторичных цепей ТН с каждой фазы собираются в одном месте - шкафу клеммной сборки. От этого распределительного устройства, расположенного на средней мачте крепления оборудования, цепи напряжения отдельным кабелем поступают на клеммник панели, расположенной в релейном зале.

Силовое первичное оборудование располагают на значительном удалении от защит и измерительных устройств, смонтированных на панелях. Протяжённость подобного кабеля достигает 300÷400 метров. Такие расстояния ведут к ощутимым потерям напряжения во внутренней схеме, что может серьёзно занизить метрологические характеристики измерительных приборов и системы в целом.

По этой причине качество преобразования первичной величины напряжения, например, 330 кВ во вторичное значение 100 вольт с необходимым классом точности 0,2 или 0,5 может не укладываться в допустимые пределы, требуемые для надежной работы измерительных комплексов и защит.

Чтобы исключить подобные ошибки на стадии эксплуатации все измерительные кабели подвергаются расчету на потери напряжения еще во время проектирования схемы электрического оборудования.

Как создаются потери напряжения

Кабель состоит из токопроводящих жил, каждая из которых окружена слоем диэлектрика. Вся конструкция помещена в герметичный диэлектрический корпус.

Металлические проводники размещены довольно близко между собой, плотно прижаты защитной оболочкой. При большой длине магистрали они начинают работать как конденсатор с обкладками, создающими заряд. За счет его действия образуется емкостное сопротивление, являвшееся составной частью реактивного.

В результате преобразований на обмотках трансформаторов, реакторов и других элементах с индуктивностями мощность электрической энергии приобретает индуктивный характер. Резистивное сопротивление металла жил образует активную составляющую полного или комплексного сопротивления Zп каждой фазы.

Для работы под напряжением кабель подключается на нагрузку с полным комплексным сопротивлением Zн в каждой жиле.

Во время эксплуатации кабеля в трехфазной схеме при номинальном режиме нагрузки токи в фазах L1÷L3 симметричны, а в нейтральном проводе N протекает ток небаланса очень близкий к нулю.

Комплексное сопротивление проводников при протекании по ним тока вызывает падение и потери напряжения в кабеле, снижает его входную величину, а за счет реактивной составляющей еще и отклоняет по углу. Все это схематично показано на векторной диаграмме.

На выходе кабеля действует напряжение U2, которое отклонено от вектора тока на угол φ и снижено на величину падения I∙z от входного значения U1. Другими словами, вектор падения напряжения в кабеле образован прохождением тока по комплексному сопротивлению проводника и равен значению геометрической разности входного и выходного векторов.

Для наглядности он показан увеличенным масштабом и обозначен отрезком ас или гипотенузой прямоугольного треугольника асk. Его катеты ak и kc обозначают падение напряжения на активной и реактивной составляющей сопротивления кабеля.

Мысленно продолжим направление вектора U2 до пересечения с линией окружности, образованной вектором U1 из центра в точке О. У нас появился вектор ab, с углом, повторяющим направлением U2 и длиной, равной арифметической разности величин U1-U2. Эта скалярная величина называется потерей напряжения.

Ее рассчитывают при создании проекта и замеряют в процессе эксплуатации кабеля для контроля сохранности его технических характеристик.

Принцип замера потерь напряжения в кабеле

Для проведения эксперимента необходимо выполнить два замера вольтметром на разных концах: входе и нагрузке. Поскольку разница между ними будет маленькая, то необходимо пользоваться высокоточным прибором желательно класса 0,2.

Длина кабеля может большой, что потребует значительного времени на переход с одного места на другое. За этот период напряжение в сети способно измениться по разным причинам, что исказит конечный результат. Поэтому такие замеры принято выполнять одновременно с двух сторон, привлекать помощника со средствами связи и вторым измерительным высокоточным прибором.

Поскольку вольтметры измеряют действующую величину напряжения, то разница их показаний укажет на величину потерь, образованную арифметическим вычитанием модулей векторов на входе и выходе кабеля.

В качестве примера рассмотрим приведенные на верхних фотографиях цепи измерительных трансформаторов напряжения. Допустим, что линейная величина на входе кабеля замерена с точностью до десятых долей и равно 100,0 вольт, а на выходных клеммах, подключенных к нагрузке, она составила 99,5 вольта. Это значит, что потери напряжения определены как 100,0-99,5=0,5 V. При переводе в проценты они составили 0,5%.

Принцип расчета потерь напряжения

Вернёмся к векторной диаграмме векторов падения и потерь напряжения. Когда конструкция кабеля известна, то по удельному сопротивлению, толщине и длине металла токоведущей жилы вычисляется ее активное сопротивление.

Удельное реактивное сопротивление и длина позволяют определить полное реактивное сопротивление кабеля. Часто для расчета вполне достаточно взять справочник с таблицами и по марке кабеля с определёнными техническим характеристикам вычислить оба вида сопротивлений (активное и реактивное).

Зная два катета прямоугольного треугольника вычисляют гипотенузу - значение комплексного сопротивления.

Кабель создается для передачи тока номинальной величины. Умножив его численное значение на комплексное сопротивление узнаем величину падения напряжения - сторону ас. Аналогично вычисляются оба катета: ak (I∙R) и kс (I∙X).

Далее выполняются простые тригонометрические вычисления. В треугольнике ake определяется катет ae умножением I∙R на cos φ, а в Δ сkf - длина стороны cf (I∙X умножается на sin φ). Обращаем внимание, что отрезок cf равен длине отрезка ed, как противоположной стороне прямоугольника.

Складываем полученные длины ae и ed. Узнаем протяженность отрезка ad, которая чуть-чуть меньше, чем ab или потери напряжения. В силу малой величины bd этим значением проще пренебречь, чем пытаться его учитывать в расчетах, что практически всегда и делают.

Вот такой несложный алгоритм заложен в основу расчета двухжильного кабеля при питании его переменным синусоидальным током. Методика действует с небольшими корректировками и для цепей постоянного тока.

В трехфазных линиях, работающих по трех- или четырехжильным кабелям подобная методика расчета используется для каждой фазы. За счет этого она намного усложняется.

Как выполняется расчет на практике

Времена, когда подобные расчеты производились вручную по формулам уже давно прошли. В проектных организациях давно используются специальные таблицы, графики и диаграммы, сведенные в технические справочники. Они избавляют от рутинной работы выполнения многочисленных математических операций и связанных с ними ошибок оператора.

В качестве примера можно привести методики, изложенные в общедоступных справочниках:

Федорова по электроснабжению за 1986 год;

по проектным работам для электроснабжения линий электропередач и электросетей под редакцией Большмана, Круповича и Самовера.

С массовым внедрением в нашу жизнь компьютеров стали разрабатываться программы расчета потерь напряжения, значительно облегчающие этот процесс. Они создаются как для выполнения сложных расчетов сетей электроснабжения проектными организациями, так и приближенной оценки предварительных результатов использования отдельного кабеля.

Владельцы электротехнических сайтов для этих целей размещают на своих ресурсах различные калькуляторы, которые позволяют быстро оценить возможности кабелей разных марок. Чтобы их найти достаточно в поиске Гугл ввести соответствующий запрос и выбрать один из сервисов.

В качестве примера рассмотрим работу калькулятора такого вида.

Сделаем ему тестовое испытание и введем исходные данные в соответствующие поля:

длина линии - 400 м;

сечение кабеля - 16 мм кв (скорее всего это не кабель, а одна жила);

расчет по мощности - 100 Вт;

количество фаз - 3;

напряжение сети - 100 вольт;

коэффициент мощности -0,92;

температура - 20 градусов.

Жмем кнопку «Расчет потерь напряжения в кабеле» и смотрим на итог работы сервиса.

Получился результат довольно правдоподобный: 0,714 вольта или 0,714%.

Попробуем его перепроверить на другом сайте. Для этого заходим на конкурирующий сервис и вводим те же значения.

В итоге получаем быстрый расчет.

Теперь можно сравнить результаты, выполненные разными сервисами. 0,714-0,693373=0,021 вольта.

Точность расчета в обоих случаях вполне приемлема не только для быстрого анализа эксплуатационных характеристик кабеля, но и для других целей.

Метод сравнения работы двух онлайн сервисов показал их работоспособность и отсутствие ошибок ввода данных, которые может совершить человек по невнимательности.

Однако, выполнив подобный расчет успокаиваться рано. Надо сделать вывод о пригодности выбранного кабеля для работы при конкретных условиях эксплуатации. Для этого существуют технические требования к допустимым отклонениям напряжения от нормы.

Нормативные документы по отклонению напряжения от номинальной величины

В зависимости от государственной принадлежности пользуются одним из нижеперечисленных.

ТКП 45-4.04-149-2009 (РБ)

Документ действует на территории республики Беларусь. При получении результата обращайте внимание на пункт 9.23.

СП 31-110–2003 (РФ)

Действующие нормативы предусмотрены для применения на объектах электроснабжения Российской Федерации. Рассматривайте пункт 7.23.

Заменил 1 января 1999 года межгосударственный стандарт, ГОСТ 13109 от 1987 года. Анализируйте по пункту 5.3.2.

Способы снижения потерь в кабеле

Когда расчет потерь напряжения в кабеле выполнен и результат сравнен с требованиями нормативных документов, то можно сделать вывод о пригодности кабеля для работы.

Если результат показал, что погрешности завышены, то необходимо выбирать другой кабель или уточнять условия его эксплуатации. На практике часто встречается типичный случай, когда уже у работающего кабеля методами замеров выявили, что потери напряжения в нем превышают допустимые нормы. За счет этого качество электроснабжения объектов понижается.

В такой ситуации необходимо принимать дополнительные технические мероприятия, позволяющие уменьшить материальные затраты, необходимые на полную замену кабеля за счет:

1. ограничения протекающей нагрузки;

2. увеличения площади поперечного сечения токопроводящих жил;

3. уменьшения рабочей длины кабеля;

4. снижения температуры эксплуатации.

Влияние передаваемой по кабелю мощности на потери напряжения

Протекание тока по проводнику всегда сопровождается выделением тепла в нем, а нагрев сказывается на его проводимости. Когда через кабель передаются повышенные мощности, то они, создавая большую температуру, увеличивают потери напряжения.

Чтобы их уменьшить иногда вполне достаточно часть потребителей, получающих электроэнергию по кабелю, просто отключить и перезапитать по другой, обходной цепочке.

Этот способ приемлем для разветвленных схем с большим количеством потребителей и резервных магистралей для их подключения.

Увеличение площади сечения жилы кабеля

Этим методом часто пользуются для снижения потерь в цепях измерительных трансформаторов напряжения. Если подключить к работающему кабелю еще один и соединить их жилы параллельно, то токи раздвоятся и уменьшат нагрузку в каждом проводе. Потери напряжения тоже снижаются, а точность работы измерительной системы восстанавливается.

Пользуясь таким способом важно не забывать вносить изменения в исполнительную документацию и особенно схемы монтажа, которыми пользуется ремонтно-оперативный персонал для проведения периодических технических обслуживаний. Это предотвратит ошибки работников.

Уменьшение рабочей длины кабеля

Способ не типичный, но в отдельных случаях им можно воспользоваться. Дело в том, что схемы прокладки кабельных трасс на многих развитых предприятиях энергетики постоянно развиваются и совершенствуются применительно к доставляемому оборудованию.

За счет этого создаются возможности переложить кабель с сокращением его длины, что снизит в итоге потери напряжения.

Влияние температуры окружающей среды

Работа кабеля в помещениях с повышенным нагревом ведет к нарушению теплового баланса, увеличению погрешностей его технических характеристик. Прокладка по другим магистралям или применение слоя теплоизоляции может снизить потери напряжения.

Как правило, эффективно улучшить характеристики кабеля удается одним или несколькими способами при комплексном их применении. Поэтому, когда возникает подобная необходимость, важно просчитать все возможные пути решения проблемы и выбрать наиболее приемлемый вариант для местных условий.

Следует учитывать, что грамотное ведение электрического хозяйства требует постоянного анализа оперативной обстановки, предвидения вариантов развития событий, умения просчитывать различные ситуации. Эти качества выделяют хорошего электрика из общей массы обычных работников.

Электрик Инфо - электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров.

Информация и обучающие материалы для начинающих электриков.

Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок.

Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+

Калькулятор расчета потерь напряжения

Во время проектирования электрических сетей и систем со слабыми токами довольно часто требуются расчеты потерь напряжения в кабелях и проводах. Данные вычисления необходимы для того чтобы выбрать кабель с наиболее оптимальным сечением жил. При неправильном выборе проводника система электроснабжения очень быстро выйдет из строя или вообще не запустится. Чтобы избежать возможных ошибок, рекомендуется использовать онлайн калькулятор расчета потерь напряжения. Данные, полученные с помощью калькулятора, обеспечат устойчивую и безопасную работу линий и сетей.

Причины энергопотери при передаче электроэнергии

Существенные потери электроэнергии происходят в результате излишнего рассеивания. Из-за лишнего тепла кабель может сильно нагреваться, особенно при больших нагрузках и неправильных расчетах потерь электричества. Под действием избыточного тепла наступает повреждение изоляции, создается реальная угроза здоровью и жизни людей.

Потери электроэнергии нередко происходят из-за слишком большой протяженности кабельных линий, при большой мощности нагрузки. В случае продолжительной эксплуатации, существенно возрастают расходы на оплату электричества. Неправильные расчеты способны вызвать сбои в работе оборудования, например, охранной сигнализации. Потери напряжения в кабеле приобретают важное значение, когда источник питания оборудования имеет низкое напряжение постоянного или переменного тока, номиналом от 12 до 48В.

Как рассчитать потери напряжения

Избежать возможных проблем поможет калькулятор расчета потери напряжения, работающий в онлайн режиме. В таблицу исходных данных помещаются данные о длине кабеля, его сечении и материале, из которого он изготовлен. Для расчетов потребуются сведения о мощности нагрузки, напряжении и токе. Кроме того, учитывается коэффициент мощности и температурные показатели кабеля. После нажатия кнопки появляются данные о энергопотерях в процентах, показатели сопротивления проводника, реактивной мощности и напряжения, испытываемого нагрузкой.

Основной формулой расчета является следующая: ΔU=IхRL, в которой ΔU означает потери напряжения на расчетной линии, I является потребляемым током, определяемым преимущественно параметрами потребителя. RL отражает сопротивление кабеля, в зависимости от его длины и площади сечения. Именно последнее значение играет решающую роль при потере мощности в проводах и кабелях.

Возможности для снижения потерь

Основным способом снижения потерь в кабеле, является увеличение площади его сечения. Кроме того, можно уменьшить длину проводника и снизить нагрузку. Однако последние два способа не всегда можно использовать, в силу технических причин. Поэтому во многих случаях единственным вариантом остается снижение сопротивления кабеля за счет увеличения сечения.

Существенным недостатком большого сечения считается заметный рост материальных затрат. Разница становится ощутимой, когда кабельные системы растягиваются на большие расстояния. Поэтому на стадии проектирования нужно сразу же подбирать кабель с нужным сечением, для чего понадобятся расчеты потери мощности с помощью калькулятора. Данная программа имеет большое значение при составлении проектов на электромонтажные работы, поскольку ручные вычисления занимают много времени, а в режиме онлайн калькулятора подсчет занимает буквально несколько секунд.

Расчет падения напряжения в кабеле

Провода и кабели предназначены для передачи электроэнергии потребителям. При этом в протяженном проводнике падает напряжение пропорционально его сопротивлению и величине проходящего тока. В итоге к потребителю напряжение подается несколько меньше, чем оно было у источника (в начале линии). По всей длине провода потенциал будет изменяться из-за потерь в нем.

Потери напряжения в домашнем освещении

Выбор сечения кабеля производится с целью обеспечения его работоспособности при заданном максимальном токе. При этом следует учитывать его длину, от которой зависит еще один важный параметр – падение напряжения.

Линии электропередач выбирают по нормированному значению экономической плотности тока и рассчитывают на падение напряжения. Его отклонение от исходного не должно превышать заданных значений.

Величина проходящего через проводник тока зависит от подключаемой нагрузки. При ее увеличении возрастают также потери на нагрев.

На рисунке выше изображена схема подачи напряжения на освещение, где на каждом ее участке обозначены потери напряжения. Наиболее важной является самая удаленная нагрузка, и потери напряжения большей частью производятся для нее.

Потеря напряжения

  • P и Q – мощности, Вт и вар (активная и реактивная);
  • r0 и x0 – активное и реактивное сопротивления линии, Ом/м;
  • Uном – номинальное напряжение, В.
  • Uном указывается в характеристиках электроприборов.

Согласно ПУЭ, допустимые отклонения напряжения от нормы следующие:

  • силовые цепи – не выше ±5 %;
  • схемы освещения жилых помещений и снаружи зданий – до ±5 %;
  • освещение предприятий и общественных зданий – от +5 % до -2,5 %.

Общие потери напряжения от трансформаторных подстанций до самой удаленной нагрузки в общественных и жилых зданиях не должны превышать 9%. Из них 5% относится к участку до главного ввода и 4% от ввода до потребителя. В соответствии с ГОСТ 29322-2014 номинал напряжения в трехфазных сетях – 400 В. При этом допускается отклонение от него на ±10% при нормальных условиях эксплуатации.

Нужно обеспечить равномерную нагрузку в трехфазных линиях на 0,4 кВ. Здесь важно, чтобы каждая фаза была нагружена равномерно. Для этого электродвигатели подключаются к линейным проводам, а освещение – между фазами и нейтралью, уравнивая таким образом нагрузки по фазам.

В качестве исходных данных используют значения токов или мощностей. Для протяженных линий учитывается индуктивное сопротивление, когда рассчитывают ∆U в линии.

Сопротивление x0 проводов принимают в диапазоне от 0,32 до 0,44 Ом/км.

Расчет потерь в проводниках производят по ранее приведенной формуле, где удобно разделить правую часть на активную и реактивную составляющие:

Подключение нагрузки

Нагрузка подключается разными способами. Наиболее распространены следующие:

  • подключение нагрузки в конце линии (рис. а ниже);
  • равномерное распределение нагрузок по длине линии (рис. б);
  • линия L1, к которой подключена другая линия L2 с равномерно распределенными нагрузками (рис. в).

Схема, на которой показаны способы подключения нагрузок от электрощита

Расчет ЛЭП на потерю напряжения

  1. Выбор средней величины реактивного сопротивления для жил из алюминия или сталеалюминия, например, в 0,35 Ом/км.
  2. Расчет нагрузок P, Q.
  3. Расчет реактивной потери:

Определение допустимой активной потери из разности между потерей напряжения, которая задана, и вычисленной реактивной:

Сечение провода находится из отношения:

Выбор ближайшего значения сечения из стандартного ряда и определение по таблице активного и реактивного сопротивлений на 1 км линии.

На рисунке изображен ряд сечений жил кабеля разных размеров.

Кабельные жилы разных сечений

По полученным значениям рассчитывается уточненная величина падения напряжения по формуле, приведенной ранее. Если оно превысит допустимую, следует взять провод больше из того же ряда и произвести новый расчет.

Пример 1. Расчет кабеля при активных нагрузках.

Для расчета кабеля, прежде всего, следует определить суммарную нагрузку всех потребителей. За исходную можно принять P = 3,8 кВт. Сила тока находится по известной формуле:

Если все нагрузки активные, cosφ=1.

Подставив в формулу значения, можно найти ток, который будет равен: I = 3,8∙1000/220 = 17,3 А.

По таблицам находится сечение в кабеле, для медных проводников составляющее 1,5 мм 2 .

Теперь можно найти сопротивление кабеля длиной 20 м: R=2∙r0 ∙L/s=2∙0,0175 (Ом∙мм 2)∙20 (м)/1,5 (мм 2)=0,464 Ом.

В формуле расчета сопротивления для двухжильного кабеля учитывается длина обеих жил.

Определив величину сопротивления кабеля, можно легко найти потери напряжения: ∆U=I∙R/U∙100 % =17,3 А∙0,464 Ом/220 В∙100 %=3,65 %.

Если на вводе номинальное напряжение составляет 220 В, то допустимые отклонения до нагрузки составляют 5%, а полученный результат не превышает ее. Если бы было превышение допуска, пришлось бы взять больший провод из стандартного ряда, с сечением, составляющим 2,5 мм 2 .

Пример 2. Расчет падения напряжения при подаче питания на электродвигатель.

Электродвигатель потребляет ток при следующих параметрах:

  • Iном = 100 А;
  • cos φ = 0,8 в нормальном режиме;
  • Iпусковой = 500 А;
  • cos φ = 0,35 при пуске;
  • падение напряжения на электрощите, распределяющем ток 1000 А, составляет 10 В.

На рис. а ниже изображена схема питания электродвигателя.

Схемы питания электродвигателя (а) и освещения (б)

Чтобы избежать вычислений, применяют достаточно точные для практического применения таблицы с уже рассчитанным ∆U между фаз в кабеле длиной 1 км при величине тока 1 А. В приведенной ниже таблице учитываются величины сечения жил, материалы проводников, тип цепи.

Таблица для определения потерь напряжения в кабеле

Падение напряжения при нормальной работе электродвигателя составит:

Для сечения 35 мм 2 ∆U на ток 1 А составит 1 В/км. Тогда при токе 100 А и длине кабеля 0,05 км потери будут равны ∆U = 1 В/А км∙100 А∙ 0,05 км = 5 В. При добавлении к ним падения напряжения на щите 10 В, получатся общие потери ∆Uобщ = 10 В + 5 В = 15 В. В результате потери в процентах составят:

∆U% = 100∙15/400 = 3,75 %.

Эта величина значительно меньше разрешенных потерь (8 %), и она считается допустимой.

При запуске электродвигателя, его ток увеличивается до 500 А. Это на 400 В больше его номинального тока. На эту же величину возрастет нагрузка на щите распределения. Она составит 1400 А. На нем падение напряжения пропорционально увеличится:

∆U = 10∙1400/1000 = 14 В.

По таблице падение напряжения в кабеле составит: ∆U = 0,52∙500∙0,05 = 13 В. В сумме пусковые потери двигателя составят ∆Uобщ = 13+14 = 27 В. После следует определить, сколько это будет в процентном отношении: ∆U = 27/400∙100 =6,75%. Результат оказывается в пределах допустимого, поскольку не превышает предельные 8%.

Защиту для электродвигателя следует подбирать таким образом, чтобы напряжения срабатывания было больше, чем при пуске.

Пример 3. Расчет ∆U в цепях освещения.

Три однофазные осветительные цепи подключены параллельно к питающей трехфазной четырехпроводной линии, состоящей из проводников на 70 мм 2. длиной 50 м, проводящей ток 150 А. Освещение является только частью нагрузки линии (рис. б выше).

Каждая цепь освещения выполнена из медного провода длиной 20 м, сечением 2,5 мм 2 и проводит ток 20 А. Все три нагрузки подключены к одной фазе. При этом линия питания сбалансирована по нагрузкам.

Требуется определить падение напряжения в каждой из цепей освещения.

Падение напряжения в трехфазной линии определяется по действующей нагрузке, заданной в условиях примера: ∆Uлинии фаз = 0,55∙150∙0, 05 = 4,125 В. Это – потери между фазами. Для решения задачи надо найти потери между фазой и нейтралью: ∆Uлинии ф-н = 4,125/√3 = 2,4 В.

Падение напряжения для одной однофазной цепи составляет ∆Uосв = 18∙20∙0,02=7,2 В. Если сложить потери в питающей линии и цепи, то в сумме они составят ∆Uосв общ = 2,4+7,2 = 9,6 В. В процентном отношении это будет 9,6/230∙100 = 4,2 %. Результат является удовлетворительным, поскольку он меньше допустимой величины 6 %.

Проверка напряжения. Видео

Каким образом осуществляется проверка падения напряжения на кабелях разных видов, можно узнать из представленного ниже видео.

При подключении электроприборов важно правильно рассчитать и выбрать подводящие кабели и провода, чтобы потери напряжения в них не превышали допустимые. К ним также добавляются потери в питающей сети, которые следует суммировать.

Расчет потерь в кабеле

Жилы любого кабеля при прохождении по ним электрического тока выделяют тепло. Чем больше величины тока и сопротивления жил, тем выше потери в кабеле. Зная сопротивление жил кабеля и величину проходящего по ним тока можно вычислить потери практически в любой цепи. Потери выражают в процентах от номинального напряжения и рассчитывают по формуле:

где Uном – номинальное напряжение на входе кабеля, U – напряжение, подведенное к нагрузке.

На практике удобнее пользоваться специальными таблицами, предложенными Кноррингом, которые широко используются при проектировании электропроводки. Эти таблицы связывают потери в кабеле с параметром «момент нагрузки», вычисляемый как произведение мощности Р нагрузки в кВт на длину линии L в метрах.

В таблице 1 даны зависимости потерь в кабеле от моментов нагрузки для медных проводников двухпроводных линий при напряжении 220 В.

В Таблице 2 представлены зависимости потерь в кабеле от моментов нагрузки для четырехпроводных трехфазных линий с нулем на напряжение 380/220 В или трехпроводных без нуля на напряжение 380 В. Таблица 2 справедлива только для случая равенства нагрузок во всех трех фазах. В этом случае в четырехпроводной линии с нулем ток в нулевой жиле кабеля равен нулю.

Следует иметь ввиду, что при несимметричной нагрузке в трехфазной линии потери увеличиваются. Чтобы избежать ошибок при большой асимметрии нагрузки в линии с нулем целесообразно потери вычислять для наиболее нагруженной фазы по Таблице 1.

В таблице 3 даны зависимости потерь в кабеле от моментов нагрузки для медных проводников двухпроводных линий при напряжении 12 Вольт. Таблица предназначена для расчета потерь в линиях, питающих низковольтные светильники от понижающих трансформаторов.

В данных таблицах индуктивное сопротивление линий не учитывается, так как оно при использовании кабелей пренебрежимо мало по сравнению с активным сопротивлением.

Приведенные таблицы справедливы для случая, когда нагрузка Рн подключена в конце линии длиной L, как показано на Рис. 1. В этом случае момент нагрузки М вычисляется как М=L∙Рн.

Если нагрузка представляет собой большое количество равных по мощности отдельных нагрузок Рн, которые равномерно распределены по всей длине линии длиной L, как показано на Рис. 2, то в этом случае момент нагрузки М вычисляется как М=L∙Рн∙n/2, где n – количество равных между собой нагрузок.

Часто встречается случай, показанный на Рис. 3. В этом случае имеется линия L1, к которой подключена линия L2 с равномерно подключенными по ее длине нагрузками. В этом случае потери напряжения определяются как сумма потерь в линиях L1 и L2. Сечение кабелей в обеих линиях может быть различным. При этом момент нагрузки М1=L1∙Рн∙n, а М2= L2∙Рн∙n/2.

© 2013-2017. Все об электромонтаже и проектировании. Все права защищены. Е-mail: ndex.ru

Вся информация на сайте www.electromontaj-proekt.ru предоставлена в ознакомительных и познавательных целях.

Перепечатка материалов сайта запрещена.

linochek.ru

Программа “Электрик”. Потеря напряжения- куда теряется электричество в проводах?

Здравствуйте дорогие читатели Цешка.ру! Итак, сегодня на повестке дня вопрос- как рассчитать сечение провода по допустимой потере напряжения.

И поможет нам в этом конечно же программа для электриков которая так и называется- “Электрик”.

Я уже рассказывал где бесплатно скачать программу “Электрик” и как в ней работать, читайте ЗДЕСЬ и ЗДЕСЬ.

Для тех кто не знает зачем делать расчет по потере напряжения- напомню, что при большой длине провода происходит падение напряжения на этом участке и до нагрузки может “дойти” совсем мало если неправильно выбрать сечение провода.

Обычно организации, которые делают капитальный ремонт квартир, обязательно смотрят на состояние электропроводки да и вообще всего электрооборудования и при производстве ремонта меняют ветхие и устаревшие провода, автоматы ну и т.д.

При этом надо правильно выбрать сечение новой проводки не только по условиям нагрева, но и по допустимой потере напряжения.

Представим такую ситуацию. Вам предстоит ремонт квартиры ну или если у вас дом- то дома.

Вы делаете ремонт электропроводки в доме и решили провести отдельный провод розетки в комнату. Но эта комната дальняя и длина провода получается порядка 30 метров до последней розетки.

Вы знаете что ничего мощного в розетки включать никогда не будете, максимум что можете включить- это утюг, телевизор, компьютер что в сумме набегает не более 3кВт и ток при такой мощности I=P/U=3000/220=13,64 А или если округлим то 14 ампер.

Согласно ПУЭ для такого тОка подходит сечение по меди в 1,5 кв.мм. Правда изоляция провода при этом будет около 60 гр.С при температуре в помещении +25, но правила допускают такую нагрузку:

А сейчас давайте посмотрим что нам скажет программа “Электрик” в нашем случае, мы узнаем сколько вольт “потеряется” на 30м провода и сколько “дойдет” до розетки.

Итак, открываем программу “Электрик” и нас интересует кнопка под названием “Потери”, жмем на нее:

Открывается вот такое окошко, где надо поставить точку на “Потери напряжения”:

В следующем открывшемся окне жмем на кнопку “Кабельные линии и другие провода”:

Ну и в очередном окне указываем необходимые параметры, перечисляю сверху- вниз:

Найти- Потери в %

Материал проводника- медные

3- Мощность Р,кВт

4- Допустимые потери,% (в нашем примере это значение не важно, можете ставить тоже 4):

Далее надо выбрать индуктивное сопротивление, тут особо заморачиваться не надо, просто жмем на кнопку “Выбрать Xo” и в открывшемся окне нажимаем на значение “Кабель с виниловой или полихлорвинил изоляцией”:

Далее вносим значение косинуса фи, я выставил 0,85 так как у нас не чисто активная нагрузка и следующее значение вносим- длину провода 30м:

На этом все, сейчас можно узнать и результат, для этого жмем на кнопку “Расчет”:

И сейчас видим результат- целых 10 вольт напряжения “теряется” на участке медного провода сечением 1,5 кв.мм длиной 30 метров!

То есть на включенной нагрузке в 3 кВт будет уже не 220 вольт, а только 210. Для интереса можно посчитать сколько вольт “потеряется” если провод будет сечением 2,5 кв.мм:

Как видите- уже меньше, падение напряжения на участке длиной 30м составит уже всего 6 вольт.

Так же можно и наоборот узнать- какое надо сечение провода если вы знаете необходимое значение потери напряжения, для этого вверху окошка надо поставить точку на “Сечение в мм кв.” и внести нужные значения- я их обвел красным на картинке:

Вот таким образом можно с помощью программы “Электрик” определить не только значение падения напряжения на электропроводке но и узнать необходимое сечение для правильного выбора проводов при монтаже электропроводки.

Надеюсь эта информация вам поможет и не раз пригодится.

Буду рад вашим комментариям, если есть какие то технические вопросы- то прошу задавать их на форуме, именно там я отвечаю на вопросы- ФОРУМ.

Подписывайтесь на мой видеоканал на Ютубе!

Смотрите еще много видео по электрике для дома!

  1. Расчет потери напряжения для сетей постоянного тока 12, 24, 36В.
  2. Расчет потери напряжения без учета индуктивного сопротивления 220/380В.
  3. Расчет потери напряжения с учетом индуктивного сопротивления 380В.

При проектировании сетей часто приходится рассчитывать потерю напряжения в кабеле. Сейчас я хочу рассказать про основные расчеты потери напряжения в сетях постоянного и переменного тока, в однофазных и трехфазных сетях.

Обратимся к нормативным документам и посмотри какие допустимые значения отклонения напряжения.

ТКП 45-4.04-149-2009 (РБ).

9.23 Отклонения напряжения от номинального на зажимах силовых электроприемников и наиболее удаленных ламп электрического освещения недолжны превышать в нормальном режиме ±5 %,
а в после аварийном режиме при наибольших расчетных нагрузках-±10%. В сетях напряжения
12–42 В (считая от источника напряжения, например пони­жающего трансформатора) отклонения напряжения разрешается принимать до 10%.

Допускается отклонение напряжения для электродвигателей в пусковых режимах, но не более 15 %.При этом должна обеспечиваться устойчивая работа пусковой аппаратуры и запуск двигателя.

В нормальном режиме работы при загрузке силовых трансформаторов в ТП, не превышающей 70 % от их номинальной мощности, допустимые (располагаемые) суммарные потери напряжения
от шин 0,4 кВ ТП до наиболее удаленной лампы общего освещения в жилых и общественных зданиях, учитывающие потери холостого хода трансформаторов и потери напряжения в них, приведенные ко вторичному напряжению, недолжны, как правило, превышать 7,5 %. При этом потери напряжения в электроустановках внутри зданий недолжны превышать 4 % от номинального напряжения, для постановочного освещения - 5%.

СП 31-110-2003 (РФ).
7.23 Отклонения напряжения от номинального на зажимах силовых электроприемников и наиболее удаленных ламп электрического освещения не должны превышать в нормальном режиме ±5%, а предельно допустимые в послеаварийном режиме при наибольших расчетных нагрузках — ±10%. В сетях напряжением 12-50 В (считая от источника питания, например понижающего трансформатора) отклонения напряжения разрешается принимать до 10%.

Для ряда электроприемников (аппараты управления, электродвигатели) допускается снижение напряжения в пусковых режимах в пределах значений, регламентированных для данных электроприемников, но не более 15%.

С учетом регламентированных отклонений от номинального значения суммарные потери напряжения от шин 0,4 кВ ТП до наиболее удаленной лампы общего освещения в жилых и общественных зданиях не должны, как правило, превышать 7,5%.

Размах изменений напряжения на зажимах электроприемников при пуске электродвигателя не должен превышать значений, установленных ГОСТ 13109.

ГОСТ 13109.

5.3.2 Предельно допустимое значение суммы установившегося отклонения напряжения dUy и размаха изменений напряжения в точках присоединения к электрическим сетям напряжением 0,38 кВ равно 10 % от номинального напряжения.

Потери напряжения зависят от материала кабеля (медь, алюминий), сечения, длины линии, мощности (силы тока) и напряжения.

Для расчета потери напряжения я сделал 3 программки в Excele на основе книги Ф.Ф. Карпова «Как выбрать сечение проводов и кабелей».

1 Для сетей постоянного тока индуктивное сопротивление не учитывают. Рассчитать потерю напряжения можно по следующим формулам (для двухпроводной линии):

По этим формулам я считаю потерю напряжения электроприводов открывания окон (24В), а также сети освещения (220В).

2 Для трехфазных сетей, где косинус равен 1 индуктивное сопротивление также не учитывают. Этот метод также можно использовать для сетей освещения, т.к. у них cos близок к 1, погрешность получим не значительную. Формула для расчета потери напряжения (380В):

При проектировании электросетей с небольшими токами часто проводятся расчет потерь напряжения в проводниках. Полученные результаты затем используются для определения оптимального сечения токоведущих жил. Если во время выбора проводов и кабелей будет допущена ошибка, то электросистема быстро выйдет из строя либо вовсе не запустится. Для проведения необходимых вычислений используются специальные формулы или онлайн-калькуляторы.

Причины потерь

Каждый электрик знает, что кабеля состоят из жил. Они изготавливаются из меди либо алюминия и покрыты изоляционным слоем. Для защиты от механических повреждений проводники помещаются в дополнительную полимерную оболочку. Так как токоведущие жилы плотно расположены и сжаты защитным покрытием, при большой протяженности магистрали они начинают работать по принципу конденсатора. Говоря проще, в сердечниках создается заряд, обладающий емкостным сопротивлением.

Схема потери напряжения в проводах имеет следующий вид:

Если этот процесс представить графически, то показателем потерь окажется отрезок AD.

Выполнять такие вычисления вручную довольно сложно и сейчас часто используется онлайн-калькулятор. Потери напряжения, рассчитанные с его помощью, оказываются довольно точными, а погрешность минимальна.

Последствия снижения напряжения

В соответствии с нормативной документацией, потери на магистрали от трансформатора до самой удаленной точки для общественных объектов не должны превышать 9%. Что касается возможных потерь в месте ввода линии к конечному пользователю, то этот показатель должен составлять не более 4%.

В случае отклонения от указанных пределов возможны следующие последствия:

  • Энергозависимое оборудование не сможет нормально функционировать.
  • При низком напряжении на входе возможен отказ в работе электроприборов.
  • Токовая нагрузка не будет распределяться равномерно между потребителями.

К характеристикам ЛЭП предъявляются высокие требования. При их проектировании необходимо рассчитать возможные потери не только в магистральных сетях, но и вторичных.

Для расчета потерь напряжения можно использовать несколько способов. Рассмотреть стоит все, чтобы каждый электрик смог выбрать наиболее привлекательный в зависимости от ситуации.

Применение таблиц и формул

На практике при монтаже электромагистралей используются медные или алюминиевые проводники. Зная показатели удельного сопротивления этих материалов, а также силу тока и сопротивление проводов, можно использовать следующие формулы падения напряжения:

Домашний мастер и даже специалист может воспользоваться специальными таблицами. Это довольно удобный и простой способ проведения необходимых расчетов. Однако в некоторых случаях требуется получить максимально достоверный результат, учитывая показатели активного и реактивного сопротивления. В такой ситуации приходится использовать более сложную формулу:

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Онлайн сервисы

Применение формул, графиков и таблиц является довольно трудоемким процессом. Не всегда необходимо получить максимально точные результаты и в такой ситуации стоит воспользоваться онлайн-калькуляторами. Эти сервисы работают следующим образом:

  • В программу вводятся показатели силы тока, материал проводника, сечение токоведущих жил и длина магистрали.
  • Также потребуется предоставить информацию о количестве фаз, напряжению в сети, мощности и температуре линии во время эксплуатации.
  • После введения всех необходимых данных программа автоматически выполнит все нужные расчеты.

На стадии предварительного проектирования стоит воспользоваться несколькими сервисами и затем определить среднее значение. Следует признать, что определенная погрешность в расчетах при использовании онлайн-калькуляторов присутствует.

Сокращение потерь

Вполне очевидно, что потери зависят от длины проводника в магистрали. Чем этот параметр выше, тем сильнее упадет напряжение. Для сокращения потерь можно использовать несколько методов:

Последний способ отлично работает в электросетях, имеющих несколько резервных линий. Также следует помнить, что напряжение может падать при условии увеличения температуры кабеля. Если во время прокладки кабеля использовать дополнительные мероприятия по теплоизоляции, то потери можно сократить.

В энергетической отрасли расчет падения напряжения на магистрали является одной из важнейших задач. Если все вычисления были проведены грамотно, то у потребителя не возникнет проблем с эксплуатацией электрооборудования.

Для работы электроприборов необходимы определённые параметры сети. Провода обладают сопротивлением электрическому току, поэтому при выборе сечения кабелей необходимо учитывать падение напряжения в проводах.

Что такое падение напряжения

При измерении в разных частях провода, по которому течёт электрический ток, по мере движения от источника к нагрузке наблюдается изменение потенциала. Причина этого – сопротивление проводов.

Как замеряется падение напряжения

Измерить падение можно тремя способами:

  • Двумя вольтметрами. Замеры производятся в начале и конце кабеля;
  • Поочерёдно в разных местах. Недостаток метода в том, что при переходах может измениться нагрузка или параметры сети, что повлияет на показания;
  • Одним прибором, подключённым параллельно кабелю. Падение напряжения в кабеле мало, а соединительные провода большой длины, что приводит к погрешностям.

Важно! Падение напряжения может составлять от 0,1В, поэтому приборы используются класса точности не ниже 0,2.

Сопротивление металлов

Электрический ток – это направленное движение заряженных частиц. В металлах это движение свободных электронов сквозь кристаллическую решётку, которая оказывает сопротивление этому движению.

В расчетах удельное сопротивление обозначается буквой “p” и соответствует сопротивлению одного метра провода сечением 1мм².

Для самых распространённых металлов, используемых для изготовления проводов, меди и алюминия, этот параметр равен 0,017 и 0,026 Ом*м/мм², соответственно. Сопротивление отрезка провода вычисляется по формуле:

R=(p*l)/S, где:

  • l – длина,
  • S – сечение кабеля.

Например, 100 метров медного провода сечением 4мм² имеет сопротивление 0,425 Ом.

Если сечение S неизвестно, то, зная диаметр проводника, оно рассчитывается как:

S=(π*d²)/4, где:

  • π – число “пи” (3,14),
  • d – диаметр.

Как рассчитать потери напряжения

По закону Ома, при протекании тока через сопротивление на нём появляется разность потенциалов. В этом отрезке кабеля при токе 53А, допустимом при открытой прокладке, падение составит U=I*R=53А*0,425Ом=22,5В.

Для нормальной работы электрооборудования величина напряжения сети не должна выходить за пределы ±5%. Для бытовой сети 220В – это 209-231В, а для трёхфазной сети 380В допустимые пределы колебаний – 361-399В.

При изменении потребляемой мощности и тока в электрокабелях падение напряжения в токопроводящих жилах и его значение возле потребителя меняется. Эти колебания необходимо учитывать при проектировании электроснабжения.

Выбор по допустимым потерям

При расчёте потерь необходимо учитывать, что в однофазной сети используется два провода, соответственно, формула расчёта падения напряжения меняется:

В трёхфазной сети ситуация сложнее. При равномерной нагрузке, например, в электродвигателе, мощности, подключенные к фазным проводам, компенсируют друг друга, ток по нулевому проводу не идёт, и его длина в расчётах не учитывается.

Если нагрузка неравномерная, как в электроплитах, в которых может быть включен только один ТЭН, то расчёт ведётся по правилам однофазной сети.

В линиях большой протяжённости, кроме активного, учитывается также индуктивное и ёмкостное сопротивление.

Расчёт можно выполнить по таблицам или при помощи онлайн-калькулятора. В ранее приведённом примере в однофазной сети и при расстоянии 100 метров необходимое сечение составит не менее 16мм², а в трёхфазной – 10 мм².

Выбор сечения кабелей по нагреву

Ток, текущий через сопротивление, выделяет энергию Р, величина которой рассчитывается по формуле:

В кабеле из предыдущего примера Р=40А²*0,425Ом=680Вт. Несмотря на длину, этого достаточно для того, чтобы нагреть проводник.

При нагреве провода свыше допустимой температуры изоляция выходит из строя, что приводит к короткому замыканию. Величина допустимого тока зависит от материала токопроводящей жилы, изоляции и условий прокладки. Для выбора необходимо пользоваться специальными таблицами или онлайн-калькулятором.

Как уменьшить падение напряжения в кабеле

При прокладке электропроводки на большие расстояния сечение кабеля, выбранное по допустимому падению напряжения, многократно превосходит выбор, сделанный по нагреву, что приводит к увеличению стоимости электроснабжения. Но есть способы уменьшить эти расходы:

  • Повысить потенциал в начале питающего кабеля. Возможно только это при подключении к отдельному трансформатору, например, в дачном посёлке или микрорайоне. При отключении части потребителей потенциал в розетках остальных окажется завышенным;
  • Установка возле нагрузки стабилизатора. Это требует расходов, но гарантирует постоянные параметры сети;
  • При подключении нагрузки 12-36В через понижающий трансформатор или блок питания располагать их рядом с потребителем.

Справка. При понижении напряжения растёт ток в сети, падение напряжения и необходимое сечение проводов.

Способы снижения потерь в кабеле

Кроме нарушения нормальной работы электроприборов, падение напряжения в проводах приводит к дополнительным расходам на электроэнергию. Уменьшить эти затраты можно разными способами:

  • Увеличение сечения питающих проводов. Этот метод требует значительных расходов на замену кабелей и тщательной проверки экономической целесообразности;
  • Уменьшение длины линии. Прямая, соединяющая две точки, всегда короче кривой или ломаной линии. Поэтому при проектировании сетей электроснабжения линии следует прокладывать максимально коротким прямым путём;
  • Снижение окружающей температуры. При нагреве сопротивление металлов растёт, и увеличиваются потери электроэнергии в кабеле;
  • Уменьшение нагрузки. Этот вариант возможен при наличии большого числа потребителей и источников питания;
  • Приведение cosφ к 1 возле нагрузки. Это уменьшает потребляемый ток и потери.

Важно! Все изменения необходимо отображать на схемах.

К сведению. Улучшение вентиляции в кабельных лотках и других конструкциях приводит к снижению температуры, сопротивления и потерь в линии.

Для достижения максимального эффекта необходимо комбинировать эти способы между собой и с другими методами энергосбережения.

Расчёт падения напряжения и потерь электроэнергии в кабеле важен при проектировании систем электроснабжения и кабельных линий.

Видео