Блез паскаль и его вычислительные устройства. Арифмометр и суммирующие машины: Исторический обзор Когда появилась первая суммирующая машина

Суммирующая машина Паскаля (Паскалина) - вычислительное устройство, изобретенное французским ученым Блезом Паскалем (1641, по другим данным 1643). В машине Паскаля каждой цифре соответствовало определенное положение разрядного колеса, разделенного на 10 секторов. Сложение в такой машине осуществлялось поворотом колеса на соответствующее число секторов. Идея использовать вращение колеса для выполнения операции сложения (и вычитания) предлагалась и до Паскаля (например, Вильгельмом Шиккардом, 1623), но новшеством в машине Паскаля был автоматический перенос единицы в следующий, высший разряд при полном обороте колеса предыдущего разряда (так же, как при обычном сложении десятичных чисел в старший разряд числа переносят десятки, образовавшиеся в результате сложения единиц, сотни - от сложения десятков). Это давало возможность складывать многозначные числа без вмешательства человека в работу механизма. Этот принцип использовался с середины 17 до 20 века при построении арифмометров (приводимых в действие от руки) и электрических клавишных вычислительных машин (с приводом от электродвигателя).

Блез Паскаль начал создавать суммирующую машину в юности, наблюдая за работой своего отца - сборщика налогов, который был вынужден выполнять долгие и утомительные расчеты. Паскалина представляла собой механическое устройство в виде ящика с многочисленными связанными одна с другой шестеренками. Складываемые числа вводились в машину при помощи поворота наборных колес. На каждое из этих колес, соответствовавших одному десятичному разряду числа, были нанесены деления от 0 до 9. При вводе числа, колеса прокручивались до соответствующей цифры. Совершив полный оборот, избыток над цифрой 9 колесо переносило на соседний разряд, сдвигая соседнее колесо на одну позицию. Первые варианты «Паскалины» имели пять зубчатых колес - десятичных разрядов, позднее их число увеличилось до шести или восьми. Ответ появлялся в верхней части металлического корпуса. Вращение колес было возможно лишь в одном направлении, исключая возможность оперирования отрицательными числами. Машина Паскаля позволяла выполнять не только сложение, но требовала при этом применения неудобной процедуры повторных сложений.

Несмотря на преимущества автоматических вычислений использование десятичной машины для финансовых расчетов в рамках действовавшей в то время во Франции денежной системы было затруднительным. Расчеты велись в ливрах (фунтах), су (солидах) и денье (денариях). В ливре насчитывалось 20 су, в су - 12 денье. В таких условиях использование десятичной системы усложняло процесс вычислений.

Примерно за 10 лет Паскаль построил около 50 устройств и сумел продать около дюжины вариантов своей машины. Несмотря на вызываемый ею всеобщий ажиотаж, сложность изготовления и высокая стоимость машины служили препятствием ее распространению. Тем не менее, заложенный в основу «Паскалины» принцип связанных колес стал основой для большинства позднейших вычислительных устройств. Машина Паскаля была вторым реально работающим вычислительным устройством после считающих часов Вильгельма Шиккарда.

Суммирующая машина Паскаля (Паскалина) - вычислительное устройство , изобретенное французским ученым Блезом Паскалем (1641, по другим данным 1643). В машине Паскаля каждой цифре соответствовало определенное положение разрядного колеса, разделенного на 10 секторов. Сложение в такой машине осуществлялось поворотом колеса на соответствующее число секторов. Идея использовать вращение колеса для выполнения операции сложения (и вычитания) предлагалась и до Паскаля (например, Вильгельмом Шиккардом, 1623), но новшеством в машине Паскаля был автоматический перенос единицы в следующий, высший разряд при полном обороте колеса предыдущего разряда (так же, как при обычном сложении десятичных чисел в старший разряд числа переносят десятки, образовавшиеся в результате сложения единиц, сотни - от сложения десятков). Это давало возможность складывать многозначные числа без вмешательства человека в работу механизма. Этот принцип использовался с середины 17 до 20 века при построении арифмометров (приводимых в действие от руки) и электрических клавишных вычислительных машин (с приводом от электродвигателя).

Блез Паскаль начал создавать суммирующую машину в юности, наблюдая за работой своего отца - сборщика налогов, который был вынужден выполнять долгие и утомительные расчеты. Паскалина представляла собой механическое устройство в виде ящика с многочисленными связанными одна с другой шестеренками. Складываемые числа вводились в машину при помощи поворота наборных колес. На каждое из этих колес, соответствовавших одному десятичному разряду числа, были нанесены деления от 0 до 9. При вводе числа, колеса прокручивались до соответствующей цифры. Совершив полный оборот, избыток над цифрой 9 колесо переносило на соседний разряд, сдвигая соседнее колесо на одну позицию. Первые варианты «Паскалины» имели пять зубчатых колес - десятичных разрядов, позднее их число увеличилось до шести или восьми. Ответ появлялся в верхней части металлического корпуса. Вращение колес было возможно лишь в одном направлении, исключая возможность оперирования отрицательными числами. Машина Паскаля позволяла выполнять не только сложение, но требовала при этом применения неудобной процедуры повторных сложений.

Несмотря на преимущества автоматических вычислений использование десятичной машины для финансовых расчетов в рамках действовавшей в то время во Франции денежной системы было затруднительным. Расчеты велись в ливрах (фунтах), су (солидах) и денье (денариях). В ливре насчитывалось 20 су, в су - 12 денье. В таких условиях использование десятичной системы усложняло процесс вычислений.

Примерно за 10 лет Паскаль построил около 50 устройств и сумел продать около дюжины вариантов своей машины. Несмотря на вызываемый ею всеобщий ажиотаж, сложность изготовления и высокая стоимость машины служили препятствием ее распространению. Тем не менее, заложенный в основу «Паскалины» принцип связанных колес стал основой для большинства позднейших вычислительных устройств. Машина Паскаля была вторым реально работающим вычислительным устройством после считающих часов Вильгельма Шиккарда.

Первым изобретателем, механических счетных машин, стал гениальный француз Блез Паскаль. Сын сборщика налогов, Паскаль задумал построить вычислительное устройство, наблюдая бесконечные утомительные расчеты своего отца. В 1642 г., когда Паскалю было всего 19 лет, он начал работать над созданием суммирующей машины. Паскаль умер в возрасте 39 лет, но, несмотря на столь короткую жизнь, навечно вошел в историю как выдающийся математик, физик, писатель и философ. В его честь назван один из самых распространенных современных языков программирования.

Суммирующая машина Паскаля, «паскалина», представляла собой механическое устройство - ящик с многочисленными шестеренками. Всего приблизительно за десятилетие он построил более 50 различных вариантов машины. При работе на «паскалине» складываемые числа вводились путем соответствуюшего поворота наборных колесиков. Каждое колесико с нанесенными на него делениями от 0 до 9 соответствовало одному десятичному разряду числа - единицам, десяткам, сотням и т. д. Избыток над 9 колесико «переносило», совершая полный оборот и продвигая соседнее слева «старшее» колесико на 1 вперед. Другие операции выполнялись при помощи довольно неудобной процедуры повторных сложений.

1642г. Суммирующая машина Паскаля производила арифметические действия приСуммирующая машина Паскаля вращении связаных колесиков с цифровыми делениями.

Хотя машина вызвала всеобщий восторг, она не принесла Паскалю богатства. Тем не менее изобретенный им принцип связанных колес явился основой, на которой строил ось большинство вычислительных устройств на протяжении следующих трех столетий.

Основной недостаток «паскалины» состоял в неудобстве выполнения на ней всех операций, кроме простого сложения. Первая машина, позволявшая легко производить вычитание, умножение и деление, была изобретена позже в том же XVII в. в Германии. Заслуга этого изобретения принадлежит гениальному человеку, творческое воображение которого казалось неисчерпаемым. Готфрид Вильгельм Лейбниц родился в 1646 г. в Лейпциге. Он принадлежал к роду, известному своими учеными и политическими деятелями. Его отец, профессор этики, умер, когда ребенку было всего 6 лет, но к этому времени Лейбницем уже овладела жажда знаний. Дни напролет он проводил в отцовской библиотеке, читая книги и занимаясь историей, латинским и греческим языками и другими предметами.

Поступив в Лейпцигский университет в возрасте 15 лет, он по своей эрудиции, пожалуй, не уступал многим профессорам. И все же теперь перед ним открылся совершенно новый мир. В университете он впервые познакомился с работами Кеплера, Галилея и других ученых, стремительно расширявших границы научного познания. Темпы научного прогресса поразили воображение молодого Лейбница, и он решил включить в свою учебную про грамму математику.



В возрасте 20 лет Лейбницу предложили должность профессора в Нюрнбергском университете. Он отклонил это предложение, предпочтя жизни ученого дипломатическую карьеру. Однако, пока он разъезжал в карете из одной европейской столицы в другую, его беспокойный ум терзали всевозможные вопросы из самых различных областей науки и философии - от этики до гидравлики и астрономии. В 1672 г., находясь в Париже, Лейбниц познакомился с голландским математиком и астрономом Христиан ом Гюйгенсом. Видя, как много вычислений приходится делать астроному, Лейбниц решил изобрести механическое устройство, которое облегчило бы расчеты. «Поскольку это недостойно таких замечательных людей, - писал Лейбниц, - подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машины».

В 1673 г. он изготовил механический калькулятор. Сложение производил ось на нем по существу так же, как и на «паскалине», однако Лейбниц включил в конструкцию движущуюся часть (прообраз подвижной каретки будущих настольных калькуляторов) и ручку, с помощью которой можно было крутить ступенчатое колесо или - в последующих вариантах машины - цилиндры, расположенные внутри аппарата. Этот механизм с движущимся элементом позволял ускорить повторяющиеся операции сложения, необходимые для перемножения или деления чисел. Само повторение тоже было автоматическим.

1673 г. Калькулятор Лейбница ускорил выполнение операций умножения и деления.

Лейбниц продемонстрировал свою машину в Французской академии наук и Лондонском королевском обществе. Один экземпляр машины Лейбница попал к Петру Великому, который подарил ее китайскому императору, желая поразить того европейскими техническими достижениями. Но Лейбниц прославился прежде всего не этой машиной, а созданием дифференциального и интегрального исчисления (которое независимо разрабатывал в Англии Исаак Ньютон). Он заложил также основы двоичной системы счисления, которая позднее нашла применение в автоматических вычислительных устройствах.



Арифмометр Лейбница

Арифмометр (от греч. αριθμός - «число», «счёт» и греч. μέτρον - «мера», «измеритель») - настольная (или портативная) механическая вычислительная машина, предназначенная для точного умножения и деления, а также для сложения и вычитания.

Настольная или портативная: Чаще всего арифмометры были настольные или «наколенные» (как современные ноутбуки), изредка встречались карманные модели (Curta). Этим они отличались от больших напольных вычислительных машин, таких как табуляторы (Т-5М) или механические компьютеры (Z-1, Разностная машина Чарльза Бэббиджа).

Механическая: Числа вводятся в арифмометр, преобразуются и передаются пользователю (выводятся в окнах счётчиков или печатаются на ленте) с использованием только механических устройств. При этом арифмометр может использовать исключительно механический привод (то есть для работы на них надо постоянно крутить ручку. Этот примитивный вариант используется, например, в «Феликсе») или производить часть операций с использованием электромотора (Наиболее совершенные арифмометры - вычислительные автоматы, например «Facit CA1-13», почти при любой операции используют электромотор).

Точное вычисление: Арифмометры являются цифровыми (а не аналоговыми, как например логарифмическая линейка) устройствами. Поэтому результат вычисления не зависит от погрешности считывания и является абсолютно точным.

Умножение и деление: Арифмометры предназначены в первую очередь для умножения и деления. Поэтому почти у всех арифмометров есть устройство, отображающее количество сложений и вычитаний - счётчик оборотов (так как умножение и деление чаще всего реализовано как последовательное сложение и вычитание; подробнее - см. ниже).

Сложение и вычитание: Арифмометры могут выполнять сложение и вычитание. Но на примитивных рычажных моделях (например, на «Феликсе») эти операции выполняются очень медленно - быстрее, чем умножение и деление, но заметно медленнее, чем на простейших суммирующих машинах или даже вручную.

Не программируемый: При работе на арифмометре порядок действий всегда задаётся вручную - непосредственно перед каждой операцией следует нажать соответствующую клавишу или повернуть соответствующий рычаг. Это особенность арифмометра не включается в определение, так как программируемых аналогов арифмометров практически не существовало.

Идеи Чарльза Бэббиджа

Ра́зностная маши́на Чарльза Бэббиджа - механический аппарат, изобретённый английским математиком Чарльзом Бэббиджем, предназначенный для автоматизации вычислений путём аппроксимации функций многочленами и вычисления конечных разностей. Возможность приближённого представления в многочленах логарифмов и тригонометрических функций позволяет рассматривать эту машину как довольно универсальный вычислительный прибор.

Первая идея разностной машины была выдвинута немецким инженером Иоганном Мюллером в книге, изданной в 1788 году.

Однако, Чарльз Бэббидж почерпнул идею для своего проекта не у Мюллера, а из работ Гаспара де Прони, занимавшего должность руководителя бюро переписи при французском правительстве с 1790 по 1800 год.

Прони, которому было поручено выверить и улучшить логарифмические тригонометрические таблицы для подготовки к введению метрической системы, предложил распределить работу по трём уровням. На верхнем уровне группа крупных математиков занималась выводом математических выражений, пригодных для численных расчётов. Вторая группа вычисляла значения функций для аргументов, отстоящих друг от друга на пять или десять интервалов. Подсчитанные значения входили в таблицу в качестве опорных. После этого формулы отправляли третьей, наиболее многочисленной группе, члены которой проводили рутинные расчёты и именовались «вычислителями». От них требовалось только аккуратно складывать и вычитать в последовательности, определённой формулами, полученными от второй группы.

Работы де Прони (так и не законченные ввиду революционного времени), с которыми Бэббидж познакомился, находясь во Франции, навели Бэббиджа на мысль о возможности создания машины, способной заменить третью группу - вычислителей. В 1822 году Бэббидж опубликовал статью с описанием такой машины, а вскоре приступил к её практическому созданию. Как математику, Бэббиджу был известен метод аппроксимации функций многочленами и вычислением конечных разностей. С целью автоматизации этого процесса он начал проектировать машину, которая так и называлась - разностная. Эта машина должна была уметь вычислять значения многочленов до шестой степени с точностью до 18-го знака.

В том же 1822 году Бэббиджем была построена модель разностной машины, состоящая из валиков и шестерней, вращаемых вручную при помощи специального рычага. Заручившись поддержкой Королевского общества, посчитавшего его работу «в высшей степени достойной общественной поддержки», Бэббидж обратился к правительству Великобритании с просьбой о финансировании полномасштабной разработки. В 1823 году правительство Великобритании предоставило ему субсидию в размере 1500 фунтов стерлингов (общая сумма правительственных субсидий, полученных Бэббиджем на реализацию проекта, составила в конечном счёте 17 000 фунтов стерлингов).

Разрабатывая машину, Бэббидж и не представлял всех трудностей, связанных с её реализацией, и не только не уложился в обещанные три года, но и спустя девять лет вынужден был приостановить свою работу. Однако часть машины все же начала функционировать и производила вычисления даже с большей точностью, чем ожидалось.

Копия разностной машины в лондонском Музее науки

Конструкция разностной машины основывалась на использовании десятичной системы счисления. Механизм приводился в действие специальными рукоятками. Когда финансирование создания разностной машины прекратилось, Бэббидж занялся проектированием гораздо более общей аналитической машины, но затем всё-таки вернулся к первоначальной разработке. Улучшенный проект, над которым он работал между 1847 и 1849 годами, носил название «Разностная машина № 2» (англ. Difference Engine No.

Француз Блез Паскаль начал создавать суммирующую машину «Паскалину» в1642 г. в возрасте 19 лет, наблюдая за работой своего отца, который был сборщиком налогов и часто выполнял долгие и утомительные расчёты.

Машина Паскаля представляла собой механическое устройство в виде ящичка с многочисленными связанными одна с другой шестерёнками. Складываемые числа вводились в машину при помощи соответствующего поворота наборных колёсиков. На каждое из этих колёсиков, соответствовавших одному десятичному разряду числа, были нанесены деления от 0 до 9. При вводе числа, колесики прокручивались до соответствующей цифры. Совершив полный оборот избыток над цифрой 9 колёсико переносило на соседний разряд, сдвигая соседнее колесо на 1 позицию. Первые варианты «Паскалины» имели пять зубчатых колёс, позднее их число увеличилось до шести или даже восьми, что позволяло работать с большими числами, вплоть до 9999999. Ответ появлялся в верхней части металлического корпуса. Вращение колёс было возможно лишь в одном направлении, исключая возможность непосредственного оперирования отрицательными числами. Тем не менее, машина Паскаля позволяла выполнять не только сложение, но и другие операции, но требовала при этом применения довольно неудобной процедуры повторных сложений.Вычитание выполнялось при помощи дополнений до девятки, которые для помощи считавшему появлялись в окошке, размещённом над выставленным оригинальным значением.

Несмотря на преимущества автоматических вычислений использование десятичной машины для финансовых расчётов в рамках действовавшей в то время во Франции денежной системы было затруднительным. Расчёты велись в ливрах, су иденье В ливре насчитывалось 20 су, в су - 12 денье. Понятно что использование десятичной системы усложняло и без того нелёгкий процесс вычислений.

Тем не менее, примерно за 10 лет Паскаль построил около 50 и даже сумел продать около дюжины вариантов своей машины. Несмотря на вызываемый ею всеобщий восторг, машина не принесла богатства своему создателю. Сложность и высокая стоимость машины в сочетании с небольшими вычислительными способностями служили препятствием её широкому распространению. Тем не менее, заложенный в основу «Паскалины» принцип связанных колёс почти на три столетия стал основой для большинства создаваемых вычислительных устройств.

Машина Паскаля стала вторым реально работающим вычислительным устройством после Считающих часов Вильгельма Шикарда (нем.Wilhelm Schickard ), созданных в 1623 году.

В 1799 году переход Франции на метрическую систему, коснулся также её денежной системы, которая стала, наконец, десятичной. Однако, практически до начала 19-го столетия создание и использование считающих машин оставалось невыгодным. Лишь в 1820 году Чарльз Ксавиер Томас де Колмар (англ.Charles Xavier Thomas de Colmar ) запатентовал первый механический калькулятор, ставший коммерчески успешным.

Калькулятор Лейбница История создания

Идея создания машины, выполняющей вычисления, появилась у выдающегося немецкого математика и философа Готфрида Вильгельма Лейбница после его знакомства с голландским математиком и астрономом Христианом Гюйнианом. Огромное количество вычислений, которое приходилось делать астроному, навело Лейбница на мысль о создании механического устройства, которое могло бы облегчить такие расчёты («Поскольку это недостойно таких замечательных людей, подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машины»).

Механический калькулятор был создан Лейбницем в 1673 году. Сложение чисел выполнялось при помощи связанных друг с другом колёс, так же как на вычислительной машине другого выдающегося учёного-изобретателя Блеза Паскаля - «Паскалине». Добавленная в конструкцию движущаяся часть (прообраз подвижной каретки будущих настольных калькуляторов) и специальная рукоятка, позволявшая крутить ступенчатое колесо (в последующих вариантах машины - цилиндры), позволяли ускорить повторяющиеся операции сложения, при помощи которых выполнялось деление и перемножение чисел. Необходимое число повторных сложений выполнялось автоматически.

Машина была продемонстрирована Лейбницем во Французской академии наук и Лондонском королевском обществе. Один экземпляр калькулятора попал к Петру Первому, который подарил её китайскому императору, желая удивить последнего европейскими техническими достижениями.

Были построены два прототипа, до сегодняшнего дня только один сохранился в Национальной библиотеке Нижней Саксонии (нем. Niedersächsische Landesbibliothek ) в Ганновере, Германия. Несколько поздних копий находятся в музеях Германии, например, один в Немецком музее в Мюнхене.

Такое явление, как давление присутствует в нашей жизни почти везде, и нельзя ни упомянуть о известном французском ученом, Блезе Паскале, который придумал единицу измерения давления – 1 Па. В этой статье мы хотим рассказать про выдающегося физика, математика, философа и писателя, который родился 19 июня 1623 года во французском городе Овернь (в те времена Клермон-Ферране), а умер в 1662 году – 19 августа.

Блез Паскаль (1623-1662 г.ж.)

Открытия Паскаля до сегодняшнего дня служат человечеству в сфере гидравлики и вычислительной техники. Также Паскаль проявил себя в формировании литературного французского языка.

Блез Паскаль появился на свет в семье потомственного дворянина и с самого рождения имел слабое здоровье, на что врачи удивлялись, как он вообще выжил. Из-за слабого здоровья отец иногда запрещал ему заниматься геометрией, так как имел опасение за состояние здоровья, которое может ухудшиться вследствие умственного перенапряжения. Но такие ограничения не заставили Блеза отказаться от науки и уже в раннем возрасте он доказал первые теоремы Евклида. Но когда отцу стало известно, что его сын сумел доказать 32 теорему, то не смог запретить ему изучать математику.

Арифмометр Паскаля.

В 18 лет Паскаль наблюдал, как его отец составляет отчет по налогам целой области (Нормандия). Это было скучнейшее и монотонное занятие, которое отнимало массу времени и сил, так как расчеты производились в столбик. Блез решил помочь отцу и около двух лет работал над созданием вычислительной машины. Уже в 1642 году на свет появился первый калькулятор.

Арифмометр Паскаля был создан по принципу античного таксометра – устройства, которое предназначалось для расчета расстояния, только немного видоизменённого. Вместо 2 колес использовалось уже 6, что позволило выполнять расчеты с шестизначными числами.

Арифмометр Паскаля.

В данной вычислительной машине колеса могли вращаться только в одном направлении. Производить суммирующие операции на такой машине было легко. Например, нам необходимо высчитать сумму 10+15=? Для этого необходимо вращать колесо пока не выставится значение первого слагаемого 10, потом крутим это же колесо до значения 15. При этом указатель сразу же показывает 25. То есть подсчет происходит в полуавтоматическом режиме.

Вычитание на такой машине невозможно произвести, так как колеса не вращаются в обратном направлении. Делить и умножать арифмометр Паскаля не умел. Но даже в таком виде и с такими функциональными возможностями эта машина была полезной и ей с радостью пользовался Паскаль-старший. Машина производила быстрые и безошибочные математические действия по суммированию. Паскаль-старший даже вложил деньги в производство паскалин. Но это принесло только разочарование, так как большинство бухгалтеров и счетоводов не хотели принимать такое полезное изобретение. Они считали, что при введении таких машин в действие им придётся искать другую работу. В 18 столетии арифмометры Паскаля широко использовались моряками, артиллеристами и ученными для арифметических сложений. Это изобретение саботировалось со стороны финансистов более 200 лет.

Изучение атмосферного давления.

В свое время Паскаль видоизменил опыт Эванджелиста Торричелли и сделал вывод, что над жидкостью в трубке должна образоваться пустота. Он купил дорогостоящие стеклянные трубки и проводил опыты без использования ртути. Вместо неё он применил воду и вино. В ходе экспериментов выяснилось, что вино имеет свойство подыматься выше, чем вода. Декорт в свое время доказывал, что над жидкостью должны располагаться ее пары. Если вино испаряется быстрее воды, то накопившиеся пары вина должны препятствовать поднятию жидкости в трубке. Но на практике предположения Декарта были опровергнуты. Паскаль предположил, что атмосферное давление воздействует одинаково на тяжелые и легкие жидкости. Данное давление способно затолкнуть в трубку больше вина, так как оно легче.

Опыты Эванджелиста Торричелли

Паскаль, который долгое время экспериментировал с водой и вином, установил, что высота подъема жидкостей меняется в зависимости от погодных условий. В 1647 году было сделано открытие, которое свидетельствуют о том, что атмосферное давление и показания барометра зависят от погоды.
Чтобы окончательно доказать то, что высота подъёма столбика жидкости в трубке Торричелли зависит от изменения атмосферного давления, Паскаль просит своего родственника подняться с трубкой на гору Пюи-де-Дом. Высота этой горы составляет 1465 метров над уровнем моря и имеет на вершине меньшее давление, чем у ее подножья.

Так Паскаль сформулировал свой закон: на одном расстоянии от центра Земли – на горе, равнине или водоеме атмосферное давление имеет одинаковое значение.

Теория вероятности.

С 1650 года Паскаль с трудом передвигается, так как был поражен частичным параличом. Врачи считали, что его болезнь связана с нервами и ему необходимо встряхнуться. Паскаль стал посещать игорные дома и одно из заведений имело название «Папе-Рояль», которым владел герцог Орлеанский.

В этом казино судьба свела Паскаля с шевалье де Мере, который обладал необычными математическими способностями. Он поведал Паскалю, что при бросании кости в подряд 4 раза, выпадение 6 составляет более 50%. Мере делая небольшие ставки в игре выигрывал, используя свою систему. Такая система работала, только при бросании одной кости. При переходе на другой стол, где производился бросок пары костей, система Мере не приносила прибыль, а наоборот только убытки.

Такой подход натолкнул Паскаля на мысль, в которой он захотел рассчитать вероятность с математической точностью. Это был настоящий вызов судьбе. Паскаль решил решить данную задачу при помощи математического треугольника, который был известен даже в древности (например, Омар Хайям упоминал о нем), который потом получил название – треугольник Паскаля. Эта пирамида, состоящая из чисел, каждое из которых равно суме пары чисел расположенных над ним.